eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Efficiency of a solvatic sorption model for the prediction of retention times in linear gradient reversed-phase liquid chromatography working with different stationary phases; pp. 37–49

Full article in PDF format | doi: 10.3176/proc.2016.1.03

Svetlana Vorslova, Jelena Golushko, Sergey Galushko, Arturs Viksna


Currently several different approaches are used for speed-up and cost reduction for new method development in reversed-phase high-performance liquid chromatography. During this research, application of a solvatic retention model of reversed-phase high-performance liquid chromatography was studied to predict the retention of phenylisothiocyanate derivatives of 25 natural amino acids, working with different stationary phases. The gradient elution mode was used, with methanol and acetonitrile as the aqueous mobile phases. Retention factors were calculated from the molecular parameters of the structures of the analytes and stationary and mobile phase properties. Such step-by-step methods, which include the first-guess prediction of initial conditions from structural formulae and fine tuning parameters of the retention model using data from successive runs, can save time and consequently will reduce the cost of method development and optimization.


  1. Claessens, H. A. and van Staten, M. A. 2004. Review on the chemical and thermal stability of stationary phases for reversed-phase liquid chromatography. J. Chromatogr. A, 2004, 1060, 23–41.

  2. Neue, U. D. HPLC Columns: Theory, Technology and Practice. Wiley-VCH, New York, 1997.

  3. Snyder, L. R., Kirkland, J. J., and Gajch, J. L. Practical HPLC Method Development. 2nd ed. John Wiley & Sons, New York, 1998.

  4. Snyder, L. R. and Dolan, J. W. High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model. Wiley–Interscience, John Wiley & Sons, Inc., Hoboken, NJ, 2007.

  5. Chester, T. L. Business-objective-directed, constraint-based multivariate optimization of high-performance liquid chromatography operational parameters. J. Chromatogr. A, 2003, 1016, 181–193.

  6. (accessed 4 11.2014).

  7. (accessed 4.10.2014).

  8. (accessed 4.10.2014).

  9. Molnar, I. J. Computerized design of separation strategies by reversed-phase liquid chromatography: develop­ment of DryLab software. J. Chromatogr. A, 2002, 965, 175–194.

10. Van Heukelem, L. and Thomas, C. S. Computer-assisted high-performance liquid chromatography method develop­ment with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A, 2001, 910, 31–49.

11. Schmidt, A. H. and Molnar, I. Computer-assisted optimiza­tion in the development of a high-per­formance liquid chromatographic method for the analysis of kava pyrones in Piper methysticum preparations. J. Chromatogr. A, 2002, 948, 51–63.

12. Jupile, T. H., Dolan, J. W., Snyder, L. R., and Molnar, I. Two-dimensional optimization using different pairs of variables for the reversed-phase high-performance liquid chromatographic separation of a mixture of acidic compounds. J. Chromatogr. A, 2002, 948, 35–41.

13. Galushko, S. V., Kamenchuk, A. A., and Pit, G. L. Calcula­tion of retention in reversed-phase liquid chromato­graphy: IV. ChromDream software for the selection of initial conditions and for simulating chromatographic behaviour. J. Chromatogr. A, 1994, 660(1–2), 47–59.

14. Galushko, S. V. The calculation of retention and selectivity in reversed-phase liquid chromatography II. Methanol-water eluents. Chromatographia, 1993, 36, 39–42.

15. Golushko, J., Mekšs, P., Shyshkina, I., and Galushko, S. Pre­diction of conditions in reverse phase liquid chromato­graphy using chemical structure and column cha­racteristics. Latvian J. Chem., 2006, 4, 356–364.

16. Golushko, J., Mekšs, P., Shyshkina, I., and Galushko, S. Pre­diction in gradient reverse-phase liquid chromatography using chemical structure and column characteristics. Latvian J. Chem., 2008, 2, 132–146.

17. Golushko, J., Vorslova, S., Galushko, S., Viksna, A., and Edolfa, K. Prediction of retention in gradient reversed-phase liquid chromatography for phenyl­iso­thi­ocyanate derivatives of amino acids. American Chemical Science Journal, 2014, 4, 14–23.

18. Vorslova, S, Golushko, J., Galushko, S., and Viksna, A. Prediction of reversed-phase liquid chromatography retention parameters for phenylisothiocyanate derivatives of amino acids. Latvian J. Chem., 2014, 1, 61–70.

19. Rohrschneider, L. J. Characterization of stationary phases by retention data and solvation parameters. J. Sep. Science, 2001, 24, 3–9.<3::AID-JSSC3>3.0.CO;2-O

20. Mapihan, K. Le., Vial, J., and Jardy, A. J. Reversed-phase liquid chromatography column testing and classifica­tion: physicochemical interpretation based on a wide set of stationary phases. J. Chromatogr. A, 2007, 1144, 183–196.

21. Hughes, A. B. Amino Acids, Peptides and Protein in Organic Chemistry. John Wiley & Sons Ltd., 2006.

22. Mant, C. T., Zhou, N. E., and Hodges, R. S. Amino acids and peptides. In Chromatography. 5th ed. (Heft­mann, E., ed.). Elsevier, Amsterdam, 1992, B76–B87.

23. Thomas, M. D. Textbook of Biochemistry with Clinical Correlations. 4th ed. John Wiley & Sons Ltd., 1997.

24. Heinrikson, R. L. and Meredith, S. C. Amino acid analysis by reverse-phase high-performance liquid chromato­graphy: precolumn derivatization with phenylisothio­cyanate. Anal. Biochem., 1984, 136, 65–74.

25. Galushko, S. V. Calculation of retention and selectivity in reversed-phase liquid chromatography. J. Chromatogr. A, 1991, 552, 91–102.

Back to Issue