eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Contribution of wave set-up into the total water level in the Tallinn area; pp. 338–348
PDF | doi: 10.3176/proc.2015.3S.03

Katri Pindsoo, Tarmo Soomere

Wave-induced set-up is a nonlinear phenomenon driven by the release of momentum from breaking waves. It may cause a systematic rise in the water level in certain coastal segments. We address the contribution of wave set-up into the formation of extreme water levels at the waterfront in the Tallinn area of the north-eastern Baltic Sea. The parameters of set-up are evaluated using the wave properties computed for 1981–2014 with a triple-nested WAM model with a horizontal resolution of about 470 m. The offshore water level is extracted from the output of the Rossby Centre Ocean (RCO) model. The maximum set-up may reach 0.7–0.8 m in some coastal sections and the all-time highest measured water level is 1.52–1.55 m in the study area. The high offshore water levels are only infrequently synchronized with extreme set-up events. Wave set-up may contribute to the all-time maximum water level at the shoreline by up to 0.5 m. This contribution considerably varies for different years. The largest contribution from set-up into extreme water levels usually occurs during north-westerly storms.



  1. Alari, V. and Kõuts, T. 2012. Simulating wave–surge interaction in a non-tidal bay during cyclone Gudrun in January 2005. In Proceedings of the IEEE/OES Baltic 2012 International Symposium “Ocean: Past, Pre­sent and Future. Climate Change Research, Ocean Observation & Advanced Technologies for Regional Sustainability,” May 8–11, Klaipėda, Lithuania. IEEE Conference Publications, doi: 10.1109/ BALTIC.2012.6249185

  2. Dean, R. G. and Bender, C. J. 2006. Static wave set-up with emphasis on damping effects by vegetation and bottom friction. Coast. Eng., 53, 149–165.

  3. Dean, R. G. and Dalrymple, R. A. 1991. Water Wave Mechanics for Engineers and Scientists. World Scientific.

  4. Hall, J. W., Dawson, R. J., Barr, S. L., Batty, M., Bristow, A. L., Carney, S. et al. 2010. City-scale integrated assessment of climate impacts, adaptation, and mitigation. In Energy Efficient Cities: Assessment Tools and Benchmarking Practices (Bose, R. K., ed.). The World Bank, 63–83.

  5. Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J. 2013. Future flood losses in major coastal cities. Nat. Clim. Change, 3(9), 802–806.

  6. Hünicke, B., Zorita, E., Soomere, T., Madsen, K. S., Johansson, M., and Suursaar, Ü. 2015. Recent change – sea level and wind waves. In The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, Springer, 155–185.

  7. Jaagus, J. 2009. Long-term changes in frequencies of wind directions on the western coast of Estonia. In Climate Change Impact on Estonian Coasts (Kont, A. and Tõnisson, H., eds). Publication 11/2009. Institute of Ecology, Tallinn University, Tallinn, 11–24.

  8. Keevallik, S. and Soomere, T. 2010. Towards quantifying variations in wind parameters across the Gulf of Finland. Estonian J. Earth Sci., 59, 288–297.

  9. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M. 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, Cambridge.

10. Lehmann, A., Getzlaff, K., and Harlaß, J. 2011. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Climate Res., 46, 185−196.

11. Leppäranta, M. 2012. Ice season in the Baltic Sea and its climatic variability. In From the Earth’s Core to Outer Space. Lecture Notes Earth Sci., 137, 139–149.

12. Leppäranta, M. and Myrberg, K. 2009. Physical Oceanography of the Baltic Sea. Springer, Berlin.

13. Longuet-Higgins, M. S. and Stewart, R. W. 1964. Radiation stresses in water waves: a physical discussion with applications. Deep-Sea Res., 11, 529–562.

14. Meier, H. E. M. 2001. On the parameterization of mixing in three-dimensional Baltic Sea models. J. Geophys. Res.–Oceans, 106, C30997–C31016.

15. Meier, H. E. M. and Höglund, A. 2013. Studying the Baltic Sea circulation with Eulerian tracers. In Pre­ventive Methods for Coastal Protection (Soomere, T. and Quak, E., eds). Springer, 101–130.

16. Meier, H. E. M., Döscher, R., and Faxén, T. 2003. A multiprocessor coupled ice–ocean model for the Baltic Sea: application to salt inflow. J. Geophys. Res.–Oceans, 108(C8), 32–73.

17. Meier, H. E. M., Broman, B., and Kjellström, E. 2004. Simulated sea level in past and future climates of the Baltic Sea. Climate Res., 27, 59–75.

18. Pettersson, H, Kahma, K. K., and Tuomi, L. 2010 Predicting wave directions in a narrow bay. J. Phys. Oceanogr., 40(1), 155–169.

19. Pettersson, H., Lindow, H., and Brüning, T. 2013. Wave climate in the Baltic Sea 2012. HELCOM Baltic Sea Environment Fact Sheets 2012. wave-climate-in-the-baltic-sea/ (accessed 28.02.2015).

20. Rutgersson, A., Jaagus, J., Schenk, F., and Stendel, M. 2014. Observed changes and variability of atmo­spheric parameters in the Baltic Sea region during the last 200 years. Climate Res., 61, 177–190.

21. Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollovik, S., Hansson, U. et al. 2011. The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus A, 63, 4–23.

22. Schmager, G., Fröhle, P., Schrader, D., Weisse, R., and Müller-Navarra, S. 2008. Sea state, tides. In State and Evolution of the Baltic Sea 1952–2005 (Feistel, R., Nausch, G., and Wasmund, N., eds). Wiley, Hoboken, NJ, 143–198.

23. Sooäär, J. and Jaagus, J. 2007. Long-term changes in the sea ice regime in the Baltic Sea near the Estonian coast. Proc. Estonian Acad. Sci. Eng., 13, 189–200.

24. Soomere, T. 2005. Wind wave statistics in Tallinn Bay. Boreal Environ. Res., 10, 103–118.

25. Soomere, T., Behrens, A., Tuomi, L., and Nielsen, J.W. 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. Sci., 8, 37–46.

26. Soomere, T., Myrberg, K., Leppäranta, M., and Nekra­sov, A. 2008. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia, 50(3), 287–362.

27. Soomere, T., Viška, M., and Eelsalu, M. 2013. Spatial variations of wave loads and closure depth along the eastern Baltic Sea coast. Estonian J. Eng., 19, 93–109.

28. Soomere, T., Pindsoo, K., Bishop, S. R., Käärd, A., and Valdmann, A. 2013. Mapping wave set-up near a complex geometric urban coastline. Nat. Hazards Earth Syst. Sci., 13, 3049–3061.

29. Suursaar, Ü., Kullas, K., Otsmann, M., Saaremäe, I., Kuik, J., and Merilain, M. 2006. Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environ. Res., 11, 143–159.

30. Suursaar, Ü., Jaagus, J., and Tõnisson, H. 2015. How to quantify long-term changes in coastal sea storminess? Estuar. Coast. Shelf S., 156, 31–41.

31. Tuomi, L., Kahma, K. K., and Pettersson, H. 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res., 16, 451–472.

32. Tuomi, L., Kahma, K. K., and Fortelius, C. 2012. Model­ling fetch-limited wave growth from an irregular shoreline. J. Marine Syst., 105, 96–105.

33. Viška, M. and Soomere, T. 2013. Simulated and observed reversals of wave-driven alongshore sediment trans­port at the eastern Baltic Sea coast. Baltica, 26(2), 145–156.


Back to Issue