ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Advantages and limitations of the nonlinear Schrödinger equation in describing the evolution of nonlinear water-wave groups; pp. 356–360
PDF | doi: 10.3176/proc.2015.3S.05

Author
Lev Shemer
Abstract

The nonlinear Schrödinger (NLS) equation is a popular and relatively simple model used extensively to describe the evolution of nonlinear water-wave groups. It is often applied in relation to the appearance of extremely steep (freak, or rogue) waves in the ocean. The limits of the applicability of the NLS equation, and in particular the relevance of the model to rogue waves, are examined here on the basis of quantitative and qualitative comparison with an experiment.

References

 

  1. Shrira, V. I. and Geogjaev, V. V. What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math., 2010, 67, 11–22.
http://dx.doi.org/10.1007/s10665-009-9347-2

  2. Peregrine, D. H. Water waves, nonlinear Schrödinger equations and their solutions. J. Austr. Math. Soc., Ser. B., 1983, 25, 16–43.

  3. Chabchoub, A., Hoffmann, N. P., and Akhmediev, N. Rogue wave observation in a water wave tank. Phys. Rev. Lett., 2011, 106, 204502.
http://dx.doi.org/10.1103/PhysRevLett.106.204502

  4. Shemer, L. and Alperovich, L. Peregrine breather revisited. Phys. Fluids, 2013, 25, 051701.
http://dx.doi.org/10.1063/1.4807055

  5. Dysthe, K. B. Note on the modification of the nonlinear Schrödinger equation for application to deep water waves. Proc. Roy. Soc. London, 1979, A369, 105–114.
http://dx.doi.org/10.1098/rspa.1979.0154

  6. Lo, E. and Mei, C. C. A numerical study of water-wave modulation based on higher-order nonlinear Schrödinger equation. J. Fluid Mech., 1985, 150, 395–416.
http://dx.doi.org/10.1017/S0022112085000180

  7. Kit, E. and Shemer, L. Spatial versions of the Zakharov and Dysthe evolution equations for deep-water gravity waves. J. Fluid Mech., 2002, 450, 201–205.
http://dx.doi.org/10.1017/S0022112001006498

  8. Zakharov, E. Stability of periodic waves of finite amplitude on a surface of deep fluid. J. Appl. Mech. Tech. Phys., (English transl.), 1968, 2, 190–194.

  9. Shemer, L., Goulitski, K., and Kit, E. Evolution of wide-spectrum unidirectional wave groups in a tank: an experimental and numerical study. Eur. J. Mech. B/Fluids, 2007, 26, 193–219.
http://dx.doi.org/10.1016/j.euromechflu.2006.06.004

10. Stiassnie, M. Note on the modified Schrödinger equation for deep water waves. Wave Motion, 1984, 6, 431–433.
http://dx.doi.org/10.1016/0165-2125(84)90043-X

11. Shemer, L., Kit, E., Jiao, H., and Eitan, O. Experiments on nonlinear wave groups in intermediate water depth. J. Waterway, Port, Coastal & Ocean Engineering, 1998, 124, 320–327.
http://dx.doi.org/10.1061/(ASCE)0733-950X(1998)124:6(320)

12. Slunyaev, V. V. and Shrira, V. I. On the highest non-breaking wave in a group: fully nonlinear water wave breathers versus weakly nonlinear theory. J. Fluid Mech., 2013, 735, 203–248.
http://dx.doi.org/10.1017/jfm.2013.498

13. Shemer, L. and Liberzon, D. Lagrangian kinematics of steep waves up to the inception of a spilling breaker. Phys. Fluids, 2014, 26, 016601.
http://dx.doi.org/10.1063/1.4860235

 

Back to Issue