eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Complexity in engineering and natural sciences; pp. 249–255
PDF | doi: 10.3176/proc.2015.3.07

Jüri Engelbrecht

An overview is presented on interdisciplinary studies into complexity of wave processes with the main attention to wave–wave, field–field, wave–internal structure a.o. interactions. The nonlinearity of these processes creates specific physical phenomena as a result of interactions. The basic assumptions of modelling, main hypotheses adopted and resulting governing equations are presented. Due to complexity of processes, numerical methods are mainly used for the analysis. However, in many cases the methods (the finite volume method, the pseudospectral method) must be modified in order to guarantee the accuracy and stability of solutions. The spectrum of problems modelled and analysed is wide including dynamical processes in solids, fluids and tissues.


  1. Aben, H. Magnetophotoelasticity – photoelasticity in a magnetic field. Exp. Mech., 1970, 10, 97–105.

  2. Aben, H. Integrated Photoelasticity. McGraw-Hill, New York, 1979.

  3. Aben, H. and Josepson, J. Strange interference blots in the interferometry of inhomogeneous birefringent objects. Appl. Opt., 1997, 36, 7172–7179.

  4. Aben, H., Anton, J., and Errapart, A. Modern photoelasticity for residual stress measurement in glass. Strain, 2008, 44, 40–48.

  5. Ainola, L. and Aben, H. On the optical theory of photoelastic tomography. J. Opt. Soc. Am., 2004, 21, 1093–1101.

  6. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore, 2008.

  7. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Generalized thermomechanics with internal variables. Arch. Appl. Mech., 2011, 81, 229–240.

  8. Berezovski, A., Engelbrecht, J., and Berezovski, M. Waves in microstructured solids: a unified view point of modelling. Acta Mechanica, 2011, 220, 349–363.

  9. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Thermoelasticity with dual internal variables. J. Thermal Stresses, 2011, 34, 413–430.

10. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., and Berezovski, M. Dispersive waves in microstructured solids. Int. J. Solids and Structures, 2013, 50, 1981–1990.

11. Berezovski, A., Engelbrecht, J., and Ván, P. Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech., 2014, 84, 1249–1261.

12. Braunbrück, A. and Ravasoo, A. Application of counterpropagating nonlinear waves to material characterization. Acta Mechanica, 2005, 174, 51–61.

13. Eik, M. Orientation of Short Steel Fibres in Concrete: Measuring and Modelling. PhD thesis, Aalto University/Tallinn University of Technology, 2014.

14. Engelbrecht, J. Nonlinear Wave Dynamics. Complexity and Simplicity. Kluwer, Dordrecht, 1997.

15. Engelbrecht, J., Vendelin, M., and Maugin, G. A. Hierarchical internal variables reflecting microstructural properties: application to cardiac muscle contraction. J. Non-Equilib. Thermodyn., 2000, 25, 119–130.

16. Engelbrecht, J., Berezovski, A., Pastrone, F., and Braun, M. Waves in microstructured materials and dispersion. Phil. Mag., 2005, 85, 4127–4141.

17. Engelbrecht, J., Pastrone, F., Braun, M., and Berezovski, A. Hierarchies of waves in nonclassical materials. In Universality in Nonclassical Nonlinearity (Delsanto, P. P., ed.), pp. 29–47. Springer, New York, 2007.

18. Engelbrecht, J. Complexity of mechanics. Rend. Sem. Mat. Univ. Pol. Torino, 2009, 67, 293–325.

19. Engelbrecht, J., Berezovski, A., and Soomere, T. Highlights in the research into complexity of nonlinear waves. Proc. Estonian Acad. Sci., 2010, 59, 61–65.

20. Engelbrecht, J., Salupere, A., and Tamm, K. Waves in microstructured solids and the Boussinesq paradigm. Wave Motion, 2011, 48, 717–726.

21. Engelbrecht, J. and Berezovski, A. Internal structures and internal variables in solids. J. Mech. Mater. Struct., 2012, 7, 983–996.

22. Engelbrecht, J. Questions About Elastic Waves. Springer, Cham, Heidelberg et al., 2015.

23. Érdi, P. Complexity Explained. Springer, Berlin, Heidelberg, 2008.

24. Herrmann, H. and Engelbrecht, J. The balance of spin from the point of view of mesoscopic continuum physics for liquid crystals. J. Non-Equilib. Thermodyn., 2010, 35, 337–346.

25. Herrmann, H. and Eik, M. Some comments on the theory of short fibre reinforced materials. Proc. Estonian Acad. Sci., 2011, 60, 179–183.

26. Herrmann, H. and Engelbrecht, J. Comments on mesoscopic continuum physics: evolution equation for the distribution function and open questions. Proc. Estonian Acad. Sci., 2012, 61, 71–74.

27. Hill, T. L. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. Mol. Biol., 1974, 28, 267–340.

28. Jones, E., Oliphant, T., Peterson, P. et al. SciPy: open source scientific tools for Python. 2007. (accessed 16.04.2015).

29. Kadomtsev, B. B. and Petviashvili, V. I. The stability of solitary waves in weakly dispersive media. Dokl. Akad. Nauk SSSR, 1970, 192, 532–541.

30. Kalda, J. Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett., 2000, 84, 471–474.

31. Kalda, J. Description of random gaussian surfaces by a four-vertex model. Phys. Rev. Lett., 2001, 64, 020101.

32. Kalda, J. Sticky particles in compressible flows: aggregation and Richardson’s law. Phys. Rev. Lett., 2007, 98, 064501.

33. Kalda, J. and Morozenko, A. Turbulent mixing: the roots of intermittency. New J. Physics, 2008, 10, 093003.

34. Kalda, J. K-spectrum of decaying, aging and growing passive scalars in lagrangian chaotic fluid flows. J. Phys. Conf. Series, 2011, 318, 052045.

35. Kalda, J., Peterson, P., Engelbrecht, J., and Vendelin, M. A cross-bridge model describing the mechanoenergetics of actomyosin interaction. In Proc. IUTAM Symposium on Computer Models in Biomechanics (Holzapfel, G. and Kuhn, E., eds), pp. 91–102. Springer, 2012.

36. Kartofelev, D. and Stulov, A. Propagation of deformation waves in wool felt. Acta Mechanica, 2014, 225, 1–11.

37. Kitt, R., Säkki, M., and Kalda, J. Probability of large movements in financial markets. Physica A: Stat. Mech. Appl., 2009, 388, 4838–4844.

38. LeVeque, R. J. Finite Volume Methods for Hyperbolic Systems. Cambridge University Press, Cambridge, 2002.

39. Maugin, G. A. Internal variables and dissipative structures. J. Non-Equilib. Thermodyn., 1990, 15, 173–192.

40. Maugin, G. A. Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford, 1999.

41. Maugin, G. A. On thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech., 2006, 75, 723–738.

42. Mandre, I. and Kalda, J. Monte-Carlo study of scaling exponents of rough surfaces and correlated percolation. Eur. Phys. J. B, 2011, 83, 107–113.

43. Mariano, P. M. Multifield theories in mechanics of solids. In Advances in Applied Mechanics (van der Giessen, E. and Wu, T. Y., eds), pp. 1–93. Academic Press, New York, 2001.

44. Meyers, R. A. (ed.). Encyclopedia of Complexity and Systems Science. Springer, New York, Vols 1–11, 2009.

45. Nicolis, G. and Nicolis, C. Foundations of Complex Systems. World Scientific, New Jersey et al., 2007.

46. Pastorelli, E. and Herrmann, H. A small-scale, low-budget semi-immersive virtual environment for scientific visualization and research. Procedia Comp. Sci., 2013, 25, 14–22.

47. Peterson, P., Soomere, T., Engelbrecht, J., and van Groesen, E. Soliton interaction as a possible model for extreme waves in shallow water. Nonlinear Processes Geophys., 2003, 10, 503–510.

48. Peterson, P. F2PY: Fortran to Python Interface Generator. 2005. (accessed 16.04.2015).

49. Prigogine, I. and Stengers, I. Order out of Chaos. Heinemann, London, 1984.

50. Randrüüt, M. and Braun, M. On one-dimensional waves in microstructured solids. Wave Motion, 2010, 47, 217–230.

51. Ravasoo, A. Non-linear interaction of waves in prestressed material. Int. J. Non-Linear Mech., 2007, 42, 1162–1169.

52. Ravasoo, A. Interaction of bursts in exponentially graded materials characterized by parametric plots. Wave Motion, 2014, 51, 758–767.

53. Salupere, A. The pseudo-spectral method and discrete spectral analysis. In Applied Wave Mathematics (Quak, E. and Soomere, T., eds). 2009, 301–333.

54. Scott, A. C. The Nonlinear Universe. Chaos, Emergence, Life. Springer, Berlin et al., 2010.

55. Sertakov, J., Engelbrecht, J., and Janno, J. Modelling 2D wave motion in microstructured solids. Mech. Research Comm., 2014, 56, 41–49.

56. Stulov, A. Hysteretic model of the grand piano hammer felt. J. Acoust. Soc. Am., 1995, 97, 2577–2585.

57. Stulov, A. Dynamic behavior and mechanical features of wool felt. Acta Mechanica, 2004, 169, 13–21.

58. Ván, P., Berezovski, A., and Engelbrecht, J. Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn., 2008, 33, 235–254.

59. Ván, P., Papenfuss, C., and Berezovski, A. Thermodynamic approarch to generalized continua. Cont. Mech. Thermodyn., 2014, 25, 403–420.

60. Vendelin, M., Bovendeerd, P. H. M., Arts, T., Engelbrecht, J., and van Campen, D. H. Cardiac mechanoenergetics replicated by cross-bridge model. Ann. Biomed. Eng., 2000, 28, 629–640.

61. Whitham, G. B. Linear and Nonlinear Waves. J. Wiley, New York, 1974.

Back to Issue