ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Asymmetric waves in wave energy systems analysed by the stochastic Gauss–Lagrange wave model; pp. 291–296
PDF | doi: 10.3176/proc.2015.3.13

Author
Georg Lindgren
Abstract

The Gauss–Lagrange stochastic wave model is known to produce irregular waves with realistic degrees of asymmetry. We present the basic structure of the model and illustrate three of its characteristic properties: front–back asymmetry, particle orbits, and average horseshoe pattern. We also study the effect of a linear filter in a wave energy converting system on asymmetry and on average power of the system.

References

  1. Aberg, S. Wave intensities and slopes in Lagrangian seas. Adv. Appl. Probab., 2007, 39, 1020–1035.
http://dx.doi.org/10.1239/aap/1198177237

  2. Aberg, S. and Lindgren, G. Height distribution of stochastic Lagrange ocean waves. Probabilist. Eng. Mech., 2008, 23, 359–363.
http://dx.doi.org/10.1016/j.probengmech.2007.08.006

  3. Eriksson, M., Isberg, J., and Leijon, M. Hydrodynamic modelling of a direct drive wave energy converter. Int. J. Eng. Sci., 2005, 43, 1377–1387.
http://dx.doi.org/10.1016/j.ijengsci.2005.05.014

  4. Fouques, S., Krogstad, H. E., and Myrhaug, D. A second order Lagrangian model for irregular ocean waves. J. Offshore Mech. Arct., 2006, 128, 177–183.
http://dx.doi.org/10.1115/1.2199563

  5. Gerstner, F. J. Theorie der Wellen. Ann. Phys., 1809, 32, 420–440.
http://dx.doi.org/10.1002/andp.18090320808

  6. Gjøsund, S. H. A Lagrangian model for irregular waves and wave kinematics. J. Offshore Mech. Arct., 2003, 125, 94–102.
http://dx.doi.org/10.1115/1.1554702

  7. Herber, D. R. and Allison, J. T. Wave energy extraction maximization in irregular ocean waves using pseudospectral methods. In Proceedings of the ASME 2013 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), August 4–7, 2013, Portland, OR, DETC2013-12600, 2013.
http://dx.doi.org/10.1115/detc2013-12600

  8. Leykin, I. A., Donelan, M. A., Mellen, R. H., and McLaughlin, D. J. Asymmetry of wind waves studied in a laboratory tank. Nonlinear Proc. Geoph., 1995, 2, 280–289.
http://dx.doi.org/10.5194/npg-2-280-1995

  9. Lindgren, G. Slepian models for the stochastic shape of individual Lagrange sea waves. Adv. Appl. Probab., 2006, 38, 430–450.
http://dx.doi.org/10.1239/aap/1151337078

10. Lindgren, G. Exact asymmetric slope distributions in stochastic Gauss-Lagrange ocean waves. Appl. Ocean Res., 2009, 31, 65–73.
http://dx.doi.org/10.1016/j.apor.2009.06.002

11. Lindgren, G. Slope distributions in front-back asymmetric stochastic Lagrange time waves. Adv. Appl. Probab., 2010, 42, 489–508.
http://dx.doi.org/10.1239/aap/1275055239

12. Lindgren, G. WafoL – a Wafo Module for Analysis of Random Lagrange Waves – A Tutorial. Math. Stat., Center for Math. Sci., Lund Univ. Sweden, 2015. URL http://www.maths.lth.se/matstat/wafoL

13. Lindgren, G. and Lindgren, F. Stochastic asymmetry properties of 3D Gauss-Lagrange ocean waves with directional spreading. Stoch. Models, 2011, 27, 490–520.
http://dx.doi.org/10.1080/15326349.2011.593410

14. Lindgren, G. and Åberg, S. First order stochastic Lagrange models for front-back asymmetric ocean waves. J. Offshore Mech. Arct., 2009, 131, 031602-1–8.
http://dx.doi.org/10.1115/1.3124134

15. Miche, M. Mouvements ondulatoires de la mer on profondeur constante ou décroissante. Forme limit de la houle lors de son déferlement. Application aux digues marines. Ann. Ponts Chaussées, 1944, 114, 25–78.

16. Myrhaug, D. and Kjeldsen, S. P. Parametric modelling of joint probability density distributions for steepness and asymmetry in deep water waves. Appl. Ocean Res., 1984, 6, 207–220.
http://dx.doi.org/10.1016/0141-1187(84)90059-2

17. Niedzwecki, J. M., van de Lindt, J. W., and Sandt, E. W. Characterizing random wave surface elevation data. Ocean Eng., 1999, 26, 401–430.
http://dx.doi.org/10.1016/S0029-8018(98)00007-9

18. Socquet-Juglard, H., Dysthe, K. B., Trulsen, K., Fouques, S., Liu, J., and Krogstad, H. Spatial extremes, shape of large waves, and Lagrangian models. In Proceedings of a Workshop, ‘Rogue Waves’, Brest, France, October 2004. URL http://www.ifremer.fr/web-com/stw2004/rw/ fullpapers/krogstad.pdf

19. St. Denis, M. and Pierson, W. J. On the motion of ships in confused seas. Soc. Naval Architects and Marine Engineers, Trans., 1953, 61, 280–357.

20. Stelzer, M. A. and Joshi, R. P. Evaluation of wave energy generation from buoy heave response based on linear converter concepts. J. Renewable Sustainable Energy, 2012, 4, 063137-1–9.
http://dx.doi.org/10.1063/1.4771693

21. WAFO-group. WAFO – A Matlab Toolbox for Analysis of Random Waves and Loads – A Tutorial. Math. Stat., Center for Math. Sci., Lund Univ. Sweden, 2011. URL http://www.maths.lth.se/matstat/wafo

Back to Issue