eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
On the effect of finite-time correlations on the turbulent mixing in smooth chaotic compressible velocity fields; pp. 1–7
PDF | doi: 10.3176/proc.2015.1.01

Siim Ainsaar, Jaan Kalda

Most theoretical results about turbulent mixing have been obtained for ideal flows that are delta-correlated in time. As is often believed, those ideal flows are, with regard to mixing, very similar to real flows with a finite correlation time. However, recent results show that these two cases may differ considerably. In this article we study the effects of finite correlation time in a chaotic smooth statistically isotropic two-dimensional velocity field. As mixing is predominantly determined by the statistics of the stretching of material elements (e.g. lines “painted” onto a liquid), in this article we focus on the characteristics describing such stretching: finite-time Lyapunov exponents and the Lyapunov dimension. For these quantities, we derive analytical expressions as functions of the correlation time and the compressibility of the velocity field, and we investigate these expressions numerically. The results agree well with numerical results of other authors, and are useful for understanding several physical phenomena, e.g. patchiness of pollution spreading on an ocean and kinematic magnetic dynamos.


  1. Falkovich, G., Gawędzki, K., and Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys., 2001, 73, 913–975.

  2. Sreenivasan, K. R. and Antonia, R. A. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech., 1997, 29, 435–472.

  3. Warhaft, Z. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech., 2000, 32, 203–240.

  4. Dimotakis, P. E. Turbulent mixing. Annu. Rev. Fluid Mech., 2005, 37, 329–356.

  5. Shraiman, B. I. and Siggia, E. D. Scalar turbulence. Nature, 2000, 405, 639–646.

  6. Toschi, F. and Bodenschatz, E. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech., 2009, 41, 375–404.

  7. Grabowski, W. W. and Wang, L.-P. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 2013, 45, 293–324.

  8. Brandenburg, A. and Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep., 2005, 417, 1–209.

  9. Gruzinov, A., Cowley, S., Espa, S., and Sudan, R. Small-scale field dynamo. Phys. Rev. Lett., 1996, 77, 4342–4345.

10. Kraichnan, R. H. Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett., 1994, 72, 1016–1019.

11. Boffetta, G., Davoudi, J., Eckhardt, B., and Schumacher, J. Lagrangian tracers on a surface flow: the role of time correlations. Phys. Rev. Lett., 2004, 93, 134501.

12. Larkin, J. and Goldburg, W. I. Decorrelating a compressible turbulent flow: an experiment. Phys. Rev. E, 2010, 82, 016301.

13. Gustavsson, K. and Mehlig, B. Lyapunov exponents for particles advected in compressible random velocity fields at small and large Kubo numbers. J. Stat. Phys., 2013, 153, 813–827.

14. Le Jan, Y. On isotropic brownian motions. Z. Wahrscheinlichkeitstheor. Verwandte Geb., 1985, 70, 609.

15. Larkin, J., Bandi, M., Pumir, A., and Goldburg, W. Power-law distributions of particle concentration in free-surface flows. Phys. Rev. E, 2009, 80, 066301.

16. Cressman, J. R., Davoudi, J., Goldburg, W. I., and Schumacher, J. Eulerian and Lagrangian studies in surface flow turbulence. New J. Phys., 2004, 6, 53.

17. Bec, J., Gawędzki, K., and Horvai, P. Multifractal clustering in compressible flows. Phys. Rev. Lett., 2004, 92, 224501.

18. Kalda, J. Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett., 2000, 84, 471–474.

19. Kalda, J. Sticky particles in compressible flows: aggregation and Richardson’s law. Phys. Rev. Lett., 2007, 98, 064501.

20. Kalda, J. and Morozenko, A. Origin of the small-scale anisotropy of the passive scalar fluctuations. In Advances in Turbulence: Proceedings of the 12th EUROMECH European Turbulence Conference, September 7–10, 2009, Marburg, Germany. Springer Proceedings in Physics, 2009, 541–544.

21. Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I. Integrals and Series: Elementary Functions. Nauka, Moskva, 1981 (in Russian).

22. Kalda, J., Soomere, T., and Giudici, A. On the finite-time compressibility of the surface currents in the Gulf of Finland, the Baltic Sea. J. Mar. Syst., 2014, 129, 56–65.

23. Kerstein, A. R. Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech., 1991, 231, 361–394.

24. Kerstein, A. R. One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech., 1999, 392, 277–334.

25. Kalda, J. and Morozenko, A. Turbulent mixing: the roots of intermittency. New J. Phys., 2008, 10, 093003.

Back to Issue