ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Imaging system for nanosatellite proximity operations; pp. 250–257

Full article in PDF format | doi: 10.3176/proc.2014.2S.06

Authors
Henri Kuuste, Tõnis Eenmäe, Viljo Allik, Ants Agu, Riho Vendt, Ilmar Ansko, Kaspars Laizans, Indrek Sünter, Silver Lätt, Mart Noorma

Abstract

This paper presents a novel low-power imaging system for nanosatellite proximity operations. A robust independent camera module with on-board image processing, based on the ARM Cortex-M3 microcontroller and fast static random access memory, has been developed and characterized for the requirements of the ESTCube-1 mission. The imaging system, optimized for use in a single unit CubeSat, utilizes commercial off-the-shelf components and standard interfaces for a cost-effective reusable design. The resulting 43.3 mm £ 22 mm £ 44.2 mm (W£H£D) aluminium camera module weighs 30 g and consumes on the average of 118 mW of power, with peaks of 280 mW during image capture. Space qualification and stress tests have been performed. A detailed case study for the ESTCube-1 10 m tether deployment monitoring and Earth imaging mission is presented. For this purpose a 4.4 mm telecentric lens, 10 bit 640£480 pixel CMOS image sensor, 700 nm infrared cut-off filter and a 25% neutral density filter are used. The resolution of the assembled system is 12.7 mm and 1 km per pixel at distances of 10 m and 700 km, respectively. Custom on-board image evaluation and high dynamic range imaging algorithms for ESTCube-1 have been implemented and tested. Optical calibration of the assembled system has been performed.


References

 

  1. CubeSat Design Specification Revision 12. California State Polytechnic University, 2009.

  2. Ansdell, M., Ehrenfreund, P., and McKay, C. Stepping stones toward global space exploration. Acta Astronaut., 2011, 68, 2098–2113.
http://dx.doi.org/10.1016/j.actaastro.2010.10.025

  3. Ehrenfreund, P., McKay, C., Rummel, J. D., Foing, B. H., Neal, C. R., Masson-Zwaan, T. et al. Toward a global space exploration program: A stepping stone approach. Adv. Space Res., 2012, 49, 2–48.
http://dx.doi.org/10.1016/j.asr.2011.09.014

  4. Bouwmeester, J. and Guo, J. Survey of worldwide picoand nanosatellite missions, distributions and subsystem technology. Acta Astronaut., 2010, 67, 854–862.
http://dx.doi.org/10.1016/j.actaastro.2010.06.004

  5. Woellert, K., Ehrenfreund, P., Ricco, A. J., and Hertzfeld, H. Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Adv. Space Res., 2011, 47, 663–684.
http://dx.doi.org/10.1016/j.asr.2010.10.009

  6. Selva, D. and Krejci, D. A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronaut., 2012, 74, 50–68.
http://dx.doi.org/10.1016/j.actaastro.2011.12.014

  7. Shiroma, W. A., Martin, L. K., Akagi, J. M., Akagi, J. T., Wolfe, B. L., Fewell, B. A. et al. CubeSats: A bright future for nanosatellites. Cent. Eur. J. Eng., 2011, 1, 9–15.
http://dx.doi.org/10.2478/s13531-011-0007-8

  8. Shimizu, K. University of Tokyo nano satellite project “PRISM”. In Proc. 27th Int. Symp. on Space Technol. and Sci., 2009, 4–9.

  9. Tsuda, Y., Sako, N., Eishima, T., Ito, T., Arikawa, Y., Miyamura, N. et al. University of Tokyo’s CubeSat project – its educational and technological significance. In Proc. 15th Annual AIAA/USU Confer. on Small Satellites, 2001, 13–16.

10. Tsuda, Y., Sako, N., Eishima, T., Ito, T., Arikawa, Y., Miyamura, N. et al. University of Tokyo’s CubeSat “XI” as a student-built educational pico-satellite – Final design and operation plan. In Proc. 23rd Int. Symp. of Space Technol. and Sci., 2002, vol. 2, 1372–1377.

11. Kurtulus, C., Baltaci, T., Ulusoy, M., Aydm, B. T., Tutkun, B., Inalhan, G. et al. iTU-pSAT I: Istanbul Technical University Student Pico-Satellite program. In Proc. IEEE 3rd Int. Confer. on Recent Adv. Space Technol. RAST’07, 2007, 725–732.

12. Rankin, D., Kekez, D. D., Zee, R. E., Pranajaya, F. M., Foisy, D. G., and Beattie, A. M. The CanX-2 nanosatellite: Expanding the science abilities of nanosatellites. Acta Astronaut., 2005, 57, 167–174.
http://dx.doi.org/10.1016/j.actaastro.2005.03.032

13. Scholz, A., Giesselmann, J., and Duda, C. CubeSat technical aspects. In Proc. 55th Int. Astronaut. Congr., 2004.

14. Scholz, A., Ley, W., Dachwald, B., Miau, J. J., and Juang, J. C. Flight results of the COMPASS-1 picosatellite mission. Acta Astronaut., 2010, 67, 1289–1298.
http://dx.doi.org/10.1016/j.actaastro.2010.06.040

15. Ashida, H., Fujihashi, K., Inagawa, S., Miura, Y., Omagari, K., Miyashita, N. et al. Design of Tokyo Tech nanosatellite Cute-1.7+APD II and its operation. Acta Astronaut., 2010, 66, 1412–1424.
http://dx.doi.org/10.1016/j.actaastro.2009.10.035

16. Stras, L., Kekez, D. D., Wells, G. J., Jeans, T., Zee, R. E., Pranajaya, F. M. et al. The design and operation of the Canadian advanced nanospace eXperiment (CanX-1). In Proc. AMSAT-NA 21st Space Symp., Toronto, Canada. 2003, 150–160.

17. Sarda, K., Eagleson, S., Caillibot, E., Grant, C., Kekez, D., Pranajaya, F. et al. Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite. Acta Astronaut., 2006, 59, 236–245.
http://dx.doi.org/10.1016/j.actaastro.2006.02.054

18. Deschamps, N. C., Grant, C. C., Foisy, D. G., Zee, R. E., Moffat, A. F. J., and Weiss, W. W. The BRITE space telescope: Using a nanosatellite constellation to measure stellar variability in the most luminous stars. Acta Astronaut., 2009, 65, 643–650.
http://dx.doi.org/10.1016/j.actaastro.2009.01.026

19. Koudelka, O., Egger, G., Josseck, B., Deschamp, N., Cordell Grant, C., Foisy, D. et al. TUGSAT-1/BRITEAustria – The first Austrian nanosatellite. Acta Astronaut., 2009, 64, 1144–1149.
http://dx.doi.org/10.1016/j.actaastro.2009.01.016

20. Taraba, M., Rayburn, C., Tsuda, A., and MacGillivray, C. Boeing’s CubeSat TestBed 1 attitude determination design and on-orbit experience. In Proc. AIAA/USU Confer. on Small Satellites, 2009.

21. Miyashita, N., Iai, M., Omagari, K., Imai, K., Yabe, H., Miyamoto, K. et al. Development of nano-satellite Cute-1. 7 + APD and its current status. In 56th Int. Astronaut. Congr., 2005.

22. Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T. et al. Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut., 2011, 69, 833–840.
http://dx.doi.org/10.1016/j.actaastro.2011.06.005

23. Tanaka, T., Kawamura, Y., and Tanaka, T. Overview and operations of CubeSat FITSAT-1 (NIWAKA). In Proc. 6th International Confer. on Recent Advances in Space Technologies, 2013.

24. Dickinson, J., DeForest, C., and Howard, T. The CubeSat Heliospheric Imaging Experiment (CHIME). In Proc. Aerospace Confer., 2011 IEEE. 2011, 1–12.
http://dx.doi.org/10.1109/AERO.2011.5747285

25. Borgeaud, M., Scheidegger, N., Noca, M., Roethlisberger, G., Jordan, F., Choueiri, T. et al. SwissCube: The first entirely-built swiss student satellite with an Earth observation payload. In Small Satellite Missions for Earth Observation (Sandau, R., Roeser, H. P., and Valenzuela, A., eds). Springer, Berlin, Heidelberg, 2010, 207–213.
http://dx.doi.org/10.1007/978-3-642-03501-2_19

26. Noca, M., Jordan, F., Steiner, N., Choueiri, T., George, F., Roethlisberger, G. et al. Lessons learned from the first Swiss pico-satellite: SwissCube. Science, 2009.

27. Bridges, C., Kenyon, S., Underwood, C., Lappas, V. STRaND-1: The world’s first smartphone nanosatellite. In Proc. 2nd International Confer. on Space Technology (ICST), 2011, 1–3.

28. Alminde, L., Bisgaard, M., Vinther, D., Viscor, T., and Ostergard, K. Educational value and lessons learned from the AAUCubeSat project. In Proc. International Confer. on Recent Adv. in Space Technol., 2003, 57–62.

29. Alminde, L., Bisgaard, M., Bhanderi, D., and Nielsen, J. D. Experience and methodology gained from 4 years of student satellite projects. In Proc. International Confer. on Recent Adv. in Space Technol., 2005, 94–99.

30. Lätt, S., Slavinskis, A., Ilbis, E., Kvell, U., Voormansik, K., Kulu, E. et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proc. Estonian Acad. Sci., 2014, 63(2S), 200–209.

31. Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Haeggstrom, E. et al. Invited Article: Electric solar wind sail: Toward test missions. Rev. Sci. Instrum., 2010, 81, 111301–111311.
http://dx.doi.org/10.1063/1.3514548

32. Pajusalu, M., Ilbis, E., Ilves, T., Veske, M., Kalde, J., Lillmaa, H. et al. Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 232–241.

33. Envall, J., Janhunen, P., Toivanen, P., Pajusalu, M., Ilbis, E., Kalde, J. et al. E-sail test payload of the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 210–221.

34. STMicroelectronics. DS6697: ARM-based 32-bit MCU, 150DMIPs, up to 1MB Flash/128+4KB RAM, crypto, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera; 2011. http://www.st.com./web/en/resource/technical/document/datasheet/CD00263874.pdf

35. Integrated Silicon Solution, Inc. IS61WV102415BLL. 1M x 16 High-speed asynchronous CMOS static RAM with 3.3 V supply; 2006. http://www.issi.com./ww/pdf/61WV102415ALL.pdf

36. USB Implementers Forum, Inc. Universal Serial Bus Specification Revision 2.0; 2000. http://www.usb.org/developers/docs/usb20 docs

37. Aptina Imaging Corporation. MT9V011: 1/4-Inch VGA Digital Image Sensor; 2009.

38. Laizans, K., Sünter, I., Zalite, K., Kuuste, H., Valgur, M., Tarbe, K. et al. Design of the fault tolerant command and data handling subsystem for ESTCube-1. Proc. Estonian Acad. Sci., 2014, 63(2S), 222–231.

39. Slavinskis, A., Kulu, E., Viru, J., Valner, R., Ehrpais, H., Uiboupin, T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 242–249.

 


Back to Issue