ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Accommodating the plasma brake experiment on-board the Aalto-1 satellite; pp. 258–266

Full article in PDF format | doi: 10.3176/proc.2014.2S.07

Authors
Osama Khurshid, Tuomas Tikka, Jaan Praks, Martti Hallikainen

Abstract

This paper presents an overview and the current status of hosting the electrostatic plasma brake (EPB) experiment onboard the Finnish Aalto-1 satellite. The goal of the experiment is to demonstrate the use of an electrostatically charged tether for satellite attitude and orbital maneuvers. The plasma brake device is based on electrostatic solar sail concept, invented in Finnish Meteorological Institute (FMI). The electrostatic solar sail is designed to utilize the solar wind charged particles to propel the spacecraft by using long conductive tethers, surrounded by electrostatic field. Similar phenomenon can be used in low Earth orbit plasma environment, where the relative motion between the electrostatically charged tether and the ionospheric plasma can produce a significant amount of drag. This drag can be utilized for deorbiting the satellite. The Aalto-1, a multi-payload CubeSat, will carry, among others, the plasma brake payload. Plasma brake payload consists of a 100 m long conductive tether, a reel mechanism for tether storage, a high voltage source, and electron guns to maintain the tether charge. The experiment will be performed in positive and negative tether charge modes and includes a long term passive deorbiting mode. The experiment hardware, the satellite mission and different phases of the experiment are presented.


References

 

  1. Janhunen, P. Electric sail for spacecraft propulsion. J. Prop. Power, 2004, 20, 763–764.
http://dx.doi.org/10.2514/1.8580

  2. Janhunen, P. On the feasibility of a negative polarity electric sail. Ann. Geophys., 2009, 27, 1439–1447.
http://dx.doi.org/10.5194/angeo-27-1439-2009

  3. Ahedo, E. and Sanmartin, J. R. Analysis of bare tether systems for deorbiting Low-Earth-Orbit satellites. J. Spacecraft Rockets, 2002, 39, 198–205.
http://dx.doi.org/10.2514/2.3820

  4. Janhunen, P., Toivanen, P., Envall, J., Merikallio, S., Montesanti, G., del Amo, J. G. et al. Electrostatic plasma brake for deorbiting a satellite. J. Prop. Power, 2010, 26, 370–372.
http://dx.doi.org/10.2514/1.47537

  5. Kestilä, A., Tikka, T., Peitso, P., Rantanen, J., Näsilä, A. et al. Aalto-1 nanosatellite – technical description and mission objectives. Geosci. Instrum. Method. Data Syst., 2013, 2, 121–130.
http://dx.doi.org/10.5194/gi-2-121-2013

  6. Praks, J., Kestilä, A., Hallikainen, M., Saari, H., Antila, J., Janhunen, P., and Vainio, R. Aalto-1 – an experimental nanosatellite for hyperspectral remote sensing. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Vancouver, Canada, 2011.

  7. Näsilä, A., Saari, H., Antila, J., Mannila, R., Kestilä, A., Praks, J. et al. Miniature spectral imager for the Aalto-1 nanosatellite. In Proc. 4th European CubeSat Symposium. Brussels, 2012, 24.

  8. Lätt, S., Slavinskis, A., Ilbis, E., Kvell, U., Voormansik, K., Kulu, E. et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proc. Estonian Acad. Sci., 2014, 63(2S), 200–209.

  9. Chung, S. and Miller, C. D. Propellant-free control of tethered formation flight, Part 1: Linear control and experimentation. J. Guid. Control Dynam., 2008, 31, 571–584.
http://dx.doi.org/10.2514/1.32188

10. Forward, R. L., Hoyt, R. P., and Uphoff, C. The terminator tether: a low-mass system for end-of-life deorbit of LEO spacecraft. In Tether Technical Interchange Meeting. Huntsville, AL, 1997.

11. Seppänen, H., Kiprich, S., Kurppa, R., Janhunen, P., and Hæggström, E. Wire-to-wire bonding of μm-diameter aluminum wires for the electric solar wind sail. Microelectron. Eng., 2011, 88, 3267–3269.
http://dx.doi.org/10.1016/j.mee.2011.07.002

12. Rauhala, T., Seppänen, H., Ukkonen, J., Kiprich, S., Maconi, G., Janhunen, P., and Haeggström, E. Automatic 4-wire Heytether production for the electric solar wind sail. In Proc. International Microelectronics Assembly and Packing Society Topical Workshop and Tabletop Exhibition on Wire Bonding. San Jose, California, 2013.

13. Ki, K. I., Kawamoto, S., and Morino, Y. Experiments and numerical simulations of an electrodynamic tether deployment from a spool-type reel using thrusters. In Proc. 1st IAA Conference on Dynamics and Control of Space Systems. 2012.

14. Hoyt, R. Tether systems for satellite deployment and disposal. In Proc. 51st International Astronautical Congress. Rio de Janeiro, Brazil, 2000.

15. Khurshid, O., Janhunen, P., Buhl, M., Visala, A., Praks, J., and Hallikainen, M. Attitude dynamics analysis of Aalto-1 satellite during de-orbiting experiment with plasma brake. In Proc. International Astronautical Congress. Naples, Italy, 2012.

16. Slavinskis, A., Kvell, U., Kulu, E., Sünter, I., Kuuste, H., Lätt, S. et al. High spin rate magnetic controller for nanosatellites. Acta Astronaut., 2014, 95, 218–226.
http://dx.doi.org/10.1016/j.actaastro.2013.11.014

17. Slavinskis, A., Kulu, E., Viru, J., Valner, R., Ehrpais, H., Uiboupin, T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 242–249.

18. Razzaghi, E., Yanes, A., Praks, J., and Hallikainen, M. Design of a reliable On-Board Computer for Aalto-1 nanosatellite mission. In Proc. 2nd IAA Conference on University Satellites Missions and CubeSat Workshop. Roma, 2013.

19. Tikka, T., Danziger, B., Engelen, S., and Hallikainen, M. Attitude Determination and Control System implementation for the Aalto-1 nanosatellite. In Proc. 2nd IAA Conference on University Satellites Missions and CubeSat Workshop. Roma, 2013, 676–694.

20. Leppinen, H., Kestila, A., Strom, M., Komu, M., and Hallikainen, M. Design of a low-power GPS subsystem for a nanosatellite science mission. In Proc. 2nd IAA Conference on University Satellites Missions and Cubesat Workshop. Roma, 2013.

21. Envall, J., Janhunen, P., Toivanen, P., Pajusalu, M., Ilbis, E., Kalde, J. et al. E-sail test payload of the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 210–221.

22. Janhunen, P., Toivanen, P., Envall, J., Merikallio, S., Montesanti, G., Gonzalez del Amo, J. et al. Overview of electric solar wind sail applications. Proc. Estonian Acad. Sci., 2014, 63(2S), 267–278.

23. Krömer, O., Rosta, R., Richter, L., and Janhunen, P. SAMUEL – Space Applied Mechanism for Unreeling Electric conductive tethers. In Abstracts of European Planetary Science Congress. Roma, 2010, vol. 5.

24. Rosta, R., Krömer, O., Zoest, T. V., Janhunen, P., and Noorma, M. Weltraum Abrollmechanismus für dünnen electrisch leitenden draht. In Proc. Deutscher Luft-Und Raumfahrtkongress. Estrel, Berlin, 2012.

25. Obraztsov, A. N. and Kleshch, V. I. Cold and laser stimulated electron emission from nanocarbons. J. Nanoelectronics Optoelectronics, 2009, 4, 207–219.
http://dx.doi.org/10.1166/jno.2009.1023

26. Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E. et al. Electric solar wind sail: Toward test missions. Rev. Sci. Instrum., 2010, 81, 111301, 1–11.

27. de Ruiter, A. A fault-tolerant magnetic spin stabilizing controller for the JC2Sat-FF mission. Acta Astronaut., 2011, 68, 160–171.
http://dx.doi.org/10.1016/j.actaastro.2010.07.012

 


Back to Issue