ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

SkImager: a concept device for in-vivo skin assessment by multimodal imaging; pp. 301–308

Full article in PDF format | doi: 10.3176/proc.2014.3.02

Authors
Janis Spigulis, Uldis Rubins, Edgars Kviesis-Kipge, Oskars Rubenis

Abstract

A compact prototype device for diagnostic imaging of skin has been developed and tested. Polarized LED light at several spectral regions is used for illumination, and round skin spot of diameter 34 mm or 11 mm is imaged by a CMOS sensor via cross-oriented polarizing filter. Four consecutive imaging series are performed: (1) RGB image at white LED illumination for revealing subcutaneous structures; (2) four spectral images at narrowband LED illumination (450, 540, 660, and 940 nm) for mapping of the main skin chromophores and diagnostic indices; (3) video-imaging under green LED illumination for mapping of skin blood perfusion; (4) autofluorescence video-imaging under UV (365 nm) LED irradiation for mapping of the skin fluorophores. Design details of the device and its software as well as preliminary results of clinical tests are presented.


References

  1. Patel, J. K., Konda, S., Perez, O. A., Amini, S., Elgart, G., and Berman, B. Newer technologies/techniques and tools in the diagnosis of melanoma. Eur. J. Dermatol., 2008, 18, 617–631.

  2. Claridge, E., Cotton, S., Hall, P., and Moncrieff, M. From colour to tissue histology: physics-based interpretation of images of pigmented skin lesions. Medical Image Anal., 2003, 7, 489–502.
http://dx.doi.org/10.1016/S1361-8415(03)00033-1

  3. Kapsokalyvas, D., Bruscino, N., Alfieri, D., de Giorgi, V., Cannarozzo, G., Cicchi, R. et al. Spectral morpho­logical analysis of skin lesions with a polarization multispectral dermoscope. Opt. Express, 2013, 21, 4826–4840.
http://dx.doi.org/10.1364/OE.21.004826

  4. Bae, Y., Nelson, J. S., and Jung, B. Multimodal facial color imaging modality for objective analysis of skin lesions. J. Biomed. Opt., 2008, 13, 064007.
http://dx.doi.org/10.1117/1.3006056

  5. Jacques, S. L., Roman, J. R., and Lee, K. Imaging super­ficial tissues with polarized light. Laser Surg. Med., 2000, 26, 119–129.
http://dx.doi.org/10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.3.CO;2-P

  6. Jakovels, D. and Spigulis, J. RGB imaging device for mapping and monitoring of hemoglobin distribution in skin. Lith. J. Phys., 2012, 52, 50–54.
http://dx.doi.org/10.3952/physics.v52i1.2267

  7. Bekina, A., Diebele, I., Rubins, U., Zaharans, J., Derjabo, A., and Spigulis, J. Multispectral assessment of skin mal­formations by modified video-microscope. Latv. J. Phys. Techn. Sci., 2012, 49(5), 4–8.

  8. Spigulis, J., Garancis, V., Rubins, U., Zaharans, E., Zaharans, J., and Elste, L. A device for multimodal imaging of skin. Proc. SPIE, 2013, 8574, 85740J.
http://dx.doi.org/10.1117/12.2003510

  9. Spigulis, J., Lihachev, A., and Erts, R. Imaging of laser-excited tissue autofluorescence bleaching rates. Appl. Opt., 2009, 48, D163–D168.
http://dx.doi.org/10.1364/AO.48.00D163

10. Verkruysse, W., Svaasand, L. O., and Nelson, J. S. Remote plethysmographic imaging using ambient light. Opt. Express, 2008, 16, 21434–21445.
http://dx.doi.org/10.1364/OE.16.021434


Back to Issue