eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Photoplethysmographic signal rising front analysis for the discrimination of subjects with increased arterial ageing; pp. 309–314

Full article in PDF format | doi: 10.3176/proc.2014.3.03

Kristjan Pilt, Kalju Meigas, Kristina Kööts, Margus Viigimaa


This study analyses the photoplethysmographic (PPG) signal waveform rising front in order to discriminate subjects with premature increase in arterial ageing. As a reference measure for the evaluation of the arterial system, the aortic augmentation index (AIx@75) was calculated using a SphygmoCor device. The study was carried out on 24 healthy subjects and 20 diabetes patients. Negative correlation relationships (r = – 0.68 and r = – 0.77) were found between the age and the slopes of the PPG signal. Significant differences were found between the healthy controls and diabetes patients. The highest difference between the two groups was found using the advanced signal processing algorithm for the slope calculation. The sensitivity, specificity, and accuracy of the method were 85%, 88%, and 86%, respectively. We conclude that the PPG technology with the advanced signal processing algorithm can be used for the discrimination of subjects with increased arterial ageing. This method gives the possibility to diagnose cardiovascular diseases in an early stadium.


  1. Amar, J., Ruidavets, J. B., Chamontin, B., Drouet, L., and Ferrières, J. Arterial stiffness and cardiovascular risk factors in a population-based study. J. Hypertens., 2001, 19, 381–387.

  2. Rajzer, M. W., Wojciechowska, W., Klocek, W., Palka, I., Brzozowska-Kiszka, M., and Kawecka-Jaszcz, K. Com­parison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arterio­graph. J. Hypertens., 2008, 26, 2001–2007.

  3. Skilton, M. R., Boussel, L., Bonnet, F., Bernard, S., Douek, P. C., Moulin, P., and Serusclat, A. Carotid intima-media and adventitial thickening: comparison of new and established ultrasound and magnetic resonance imaging techniques. Atherosclerosis, 2011, 215, 405–410.

  4. Wilkinson, I. B., Fuchs, S. A., Jansen, I. M., Spratt, J. C., Murray, G. D., Cockcroft, J. R., and Webb, D. J. Reproducibility of pulse wave velocity and aug­menta­tion index measured by pulse wave analysis. J. Hypertens., 1998, 16, 2079–2084.

  5. Laurent, S., Cockcroft, J., van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D. et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J., 2006, 27, 2588–2605.

  6. London, G. M., Blacher, J., Pannier, B., Guerin, A. P., Marchais, S. J., and Safar, M. E. Arterial wave reflections and survival in end-stage renal failure. Hypertension, 2001, 38, 434–438.

  7. Kelly, R., Hayward, C., Avolio, A., and O’Rourke, M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation, 1989, 80, 1652–1659.

  8. Wilkinson, I. B., MacCallum, H., Rooijmans, D. F., Murray, G. D., Cockcroft, J. R., McKnight, J. A., and Webb, D. J. Increased augmentation index and systolic stress in type 1 diabetes mellitus. QJM, 2000, 93, 441–448.

  9. Wilkinson, I. B., Prasad, K., Hall, I. R., Thomas, A., MacCallum, H., Webb, D. J. et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J. Am. Coll. Cardiol., 2002, 39, 1005–1011.

10. Ravikumar, R., Deepa, R., Shanthirani, C., and Mohan, V. Comparison of carotid intima-media thickness, arterial stiffness, and brachial artery flow mediated dilatation in diabetic and nondiabetic subjects (The Chennai Urban Population Study [CUPS-9]). Am. J. Cardiol., 2002, 90, 702–707.

11. Cockcroft, J. R. and Wilkinson, I. B. Arterial stiffness and pulse contour analysis: an age old concept revisited. Clin. Sci. (London), 2002, 103, 379–380.

12. Brillante, D. G., O’Sullivan, A. J., and Howes, L. G. Arterial stiffness indices in healthy volunteers using non-invasive digital photoplethysmography. Blood Press., 2008, 17, 116–123.

13. Clarenbach, C. F., Stoewhas, A. C., van Gestel, A. J., Latshang, T. D., Lo Cascio, C. M., Bloch, K. E., and Kohler, M. Comparison of photoplethysmographic and arterial tonometry-derived indices of arterial stiffness. Hypertens. Res., 2012, 35, 228–233.

14. Allen, J. Photoplethysmography and its applications in clinical physiological measurement. Physiol. Meas., 2007, 28, R1–R39.

15. Selvaraj, N., Jaryal, A., Santhosh, J., Deepak, K. K., and Anand, S. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. J. Med. Eng. Technol., 2008, 32, 479–484.

16. Korpas, D., Hálek, J., and Dolezal, L. Parameters describing the pulse wave. Physiol. Res., 2009, 58, 473–479.

17. Millasseau, S. C., Ritter, J. M., Takazawa, K., and Cho­wienczyk, P. J. Contour analysis of the photo­plethysmo­graphic pulse measured at the finger. J. Hypertens., 2006, 24, 1449–1456.

18. Sherebrin, M. H. and Sherebrin, R. Z. Frequency analysis of the Peripheral Pulse Wave detected in the finger with a photoplethysmograph. IEEE Trans. Biomed. Eng., 1990, 37, 313–317.

19. Rubins, U. Finger and ear photoplethysmogram waveform analysis by fitting with Gaussians. Med. Biol. Eng. Comput., 2008, 46, 1271–1276.

20. Selvaraj, N., Jaryal, A., Santhosh, J., Deepak, K. K., and Anand, S. Monitoring of cardiovascular reactivity during cold pressor test using photoplethysmography. In IEEE Proc. International Conference on Signal Processing. Chennai, 2008, 363–367.

21. Pilt, K., Meigas, K., Temitski, K., and Viigimaa, M. The effect of local cold and warm exposure on index finger photoplethysmographic signal waveform. In Proc. 35th Annual International Conference of the IEEE EMBS. Osaka, 2013, 2300–2303.

22. Zahedi, E., Chellappan, K., Ali, M. A., and Singh, H. Analysis of the effect of ageing on rising edge characteristics of the photoplethysmogram using a modified Windkessel model. Cardiovasc. Eng., 2007, 7, 172–181.

23. Chen, C. H., Nevo, E., Fetics, B., Pak, P. H., Yin, F. C., Maughan, W. L., and Kass, D. A. Estimation of central aortic pressure waveform by mathematical trans­formation of radial tonometry pressure: validation of generalized transfer function. Circulation, 1997, 95, 1827–1836.

24. Murgo, J. P., Westerhof, N., Giolma, J. P., and Alto­belli, S. A. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation, 1980, 62, 105–116.

25. Wilkinson, I. B., MacCallum, H., Flint, L., Cock­croft, J. R., Newby, D. E., and Webb, D. J. The influence of heart rate on augmentation index and central arterial pressure in humans. J. Physiol., 2000, 525, 263–270.

26. Pilt, K., Meigas, K., Viigimaa, M., Temitski, K., and Kaik, J. An experimental measurement complex for probable estimation of arterial stiffness. In Proc. 32nd International Conference of the IEEE Engineering in Medicine and Biology Society. Buenos Aires, 2010, 194–197.

27. Pilt, K., Ferenets, R., Meigas, K., Lindberg, L.-G., Temitski, K., and Viigimaa, M. New photo­plethysmo­graphic signal analysis algorithm for arterial stiffness estimation. The Scientific World Journal, 2013, 2013(2013), 9 pp.

Back to Issue