eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Interrupter technique for assessing respiratory resistance: a review; pp. 335–340

Full article in PDF format | doi: 10.3176/proc.2014.3.07

Jana Kivastik, Jaak Talts, Kersti Jagomägi, Rein Raamat


The use of interrupter resistance (Rint) is a feasible method of measuring respiratory resistance during bronchodilator and bronchial hyperresponsiveness testing in preschool children. In addition to a single value of Rint, it has been suggested that analysis of recorded oscillations of the mouth pressure may provide additional indices of changes in airway mechanics. This paper reviews the studies concerning analysis of those pressure oscillations, as well as modelling of the respiratory system in order to understand how different structures in this system can influence interrupter measurements.


  1. Mitzner, W. Mechanics of the lung in the 20th century. Compr. Physiol., 2011, 1, 2009–2027.

  2. Petty, T. L. John Hutchinson’s mysterious machine revisited. Chest, 2002, 121, 219–224.

  3. Kingisepp, P.-H. Alfred Fleisch (1892–1973): Professor of Physiology at the University of Tartu, Estonia. J. Med. Biography, 2011, 19, 34–37.

  4. Plakk, P., Liik, P., and Kingisepp, P.-H. Hot-wire anemo­meter for spirography. Med. Biol. Eng. Comput., 1998, 36, 17–21.

  5. Kingisepp, P.-H., Talts, J., Loog, P., Raamat, R., and Pert, V. Continuous breath-by-breath registration of pulmonary ventilation and gas exchange. Med. Biol. Eng. Comput., 1999, 37 (Suppl. 1), 315–316.

  6. Kingisepp, P.-H., Loog, P.-T., Peedo, K., Mäger, I., Pohjo­lainen, O., and Plakk, P. Evaluation of constant temperature hot wire airflow transducers using pulmonary wave generator. Eur. Respir. J., 2005, 26 (Suppl. 49), 664s.

  7. Kivastik, J., Gibson, A.-M., and Primhak, R. A.. Feasibility of shortened methacholine challenge in pre-school children. Pediatr. Pulmonol., 2006, 41, 146–150.

  8. Kivastik, J., Gibson, A.-M., and Primhak, R. A. Methacholine challenge in pre-school children – which outcome measure? Respir. Med., 2007, 101, 2555–2560.

  9. Phagoo, S. B., Wilson, N. M., and Silverman, M. Evalua­tion of the interrupter technique for measuring change in airway resistance in 5-year-old asthmatic children. Pediatr. Pulmonol., 1995, 20, 387–395.

10. Klug, B. and Bisgaard, H. Measurement of lung function in awake 2-4-year-old asthmatic children during methacholine challenge and acute asthma: a comparison of the impulse oscillation technique, the interrupter technique, and transcutaneous measurement of oxygen versus whole‑body plethysmography. Pediatr. Pulmonol., 1996, 21, 290–300.<290::AID-PPUL4>3.0.CO;2-R

11. Beydon, N., Trang‑Pham, H., Bernard, A., and Gaultier, C. Measurements of resistance by the interrupter technique and of transcutaneous partial pressure of oxygen in young children during methacholine challenge. Pediatr. Pulmonol., 2001, 31, 238–246.

12. Merkus, P. J. F. M., Stocks, J., Beydon, N., Lombardi, E., Jones, M., Mckenzie, S. A. et al. Reference ranges for interrupter resistance technique: the Asthma UK Initiative. Eur. Respir. J., 2010, 36, 157–163.

13. Beydon, N., Davis, S. D., Lombardi, E., Allen, J. L., Arets, H. G., Aurora, P. et al. American Thoracic Society/European Respiratory Society Working Group on Infant and Young Children Pulmonary Function Testing. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in pre­school children. Am. J. Respir. Crit. Care Med., 2007, 175, 1304–1345.

14. Rosenfeld, M., Allen, J., Arets, B. H., Aurora, P., Beydon, N., Calogero, C. et al. American Thoracic Society Assembly on Pediatrics Working Group on Infant and Preschool Lung Function Testing. An official American Thoracic Society workshop report: optimal lung function tests for monitoring cystic fibrosis, broncho­pulmonary dysplasia, and recurrent wheezing in children less than 6 years of age. Ann. Am. Thorac. Soc., 2013, 10, S1–S11.

15. Oswald‑Mammosser, M., Charloux, A., Donato, L., Albrech, C., Speich, J. P., Lampert, E., and Lonsdorfer, J. Interrupter technique versus plethysmography for measure­ment of respiratory resistance in children with asthma or cystic fibrosis. Pediatr. Pulmonol., 2000, 29, 213–220.<213::AID-PPUL10>3.0.CO;2-N

16. Pao, C. S., Healy, M. J. R., and McKenzie, S. A. Airway resistance by the interrupter technique: which algorithm for measuring pressure? Pediatr. Pulmonol., 2004, 37, 31–36.

17. Seddon, P., Wertheim, D., Bridge, P., and Bastian-Lee, Y. How should we estimate driving pressure to measure interrupter resistance in children? Pediatr. Pulmonol., 2007, 42, 757–763.

18. Frey, U. and Kraemer, R. Interrelationship between post­occlusional oscillatory pressure transients and standard lung function in healthy and asthmatic children. Pediatr. Pulmonol., 1995, 19, 379–388.

19. Frey, U., Schibler, A., and Kraemer, R. Pressure oscillations after flow interruption in relation to lung mechanics. Respir. Physiol., 1995, 102, 225–237.

20. Frey, U. and Kraemer, R. Oscillatory pressure transients after flow interruption during bronchial challenge test in children. Eur. Respir. J., 1997, 10, 75–81.

21. Bridge, P. D., Wertheim, D., Jackson, A. C., and McKenzie, S. A. Pressure oscillation amplitude after interruption of tidal breathing as an index of change in airway mechanics in preschool children. Pediatr. Pulmonol., 2005, 40, 420–425.

22. Talts, J., Kivastik, J., and Jagomägi, K. Amplitude analysis of pressure oscillations after interruption of tidal breathing in preschool children. In Proc. IEEE Eng. Med. Biol. Soc. Confer. Lyon, 2007, 4239–4242.

23. Kivastik, J., Talts, J., and Primhak, R. A. Interrupter technique and pressure oscillation analysis during broncho­constriction in children. Clin. Physiol. Funct. Imaging, 2009, 29, 45–52.

24. Kivastik, J., Talts, J., Jagomägi, K., Raamat, R., and Vasar, M. Repeatability of pressure oscillation amplitudes during the interrupter measurement of respiratory resistance. IFMBE Proc., 2011, 34, 9–12.

25. Shephard, R. J. Mechanical characteristics of the human airway in relation to use of the interrupter valve. Clin. Sci., 1963, 25, 263–280.

26. Talts, J. and Kivastik, J. Modelling interrupter measure­ments of respiratory resistance. IFMBE Proc., 2008, 20, 461–464.

27. Jabłoński, I. and Mroczka, J. Reduction of a linear complex model for respiratory system during airflow interruption. In Proc. IEEE Eng. Med. Biol. Soc. Confer. Buenos Aires, 2010, 730–733.

28. Jabłoński, I., Polak, A. G., and Mroczka, J. Preliminary study on the accuracy of respiratory input impedance measurement using the interrupter technique. Comput. Methods Programs Biomed., 2011, 101, 115–125.

29. Jabłoński, I. Properties of occlusional devices in extended time-frequency analysis of post-interrupter respiratory signals. IEEE Sensors J., 2012, 12, 504–511.

30. Jabłoński, I. Computer assessment of indirect insight during an airflow interrupter maneuver of breathing. Comput. Methods Programs Biomed., 2013, 110, 320–332.

Back to Issue