eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Fall detection in the older people: from laboratory to real-life; pp. 341–345

Full article in PDF format | doi: 10.3176/proc.2014.3.08

Timo Jämsä, Maarit Kangas, Irene Vikman, Lars Nyberg, Raija Korpelainen


Falls are an increasing problem of aging population, both in home-dwelling and institutionalized people. Automatic fall detection systems are a choice in supporting the independent and secure living of the older people. Typically, health technology applications such as fall detection systems are tested in experimental falls of young adults. However, sensitivity and specificity, and acceptability and usability of these systems in real-life conditions in end users should be the ultimate aim. This paper overviews our set of studies on the technology and algorithms for fall detection, from laboratory-based experiments to long-term real-life field tests. The data obtained during the incremental set of studies suggest that automatic accelerometric fall detection systems might offer a tool for improving safety among older people. Additional studies are needed for further improvement of fall detection sensitivity and decreasing the false alarm rate, and for the implementation of the technology to elderly care ICT platforms.


  1. Tinetti, M. E., Speechley, M., and Ginter, S. F. Risk factors for falls among elderly persons living in the community. New Engl. J. Med., 1988, 319, 1701–1707.

  2. Bueno-Cavanillas, A., Padilla-Ruiz, F., Jimenez-Moleon, J. J., Peinado-Alonso, C. A., and Galvez-Vargas, R. Risk factors in falls among the elderly according to extrinsic and intrinsic precipitating causes. Eur. J. Epidemiol., 2000, 16, 849–859.

  3. Fleming, J. and Brayne, C. Cambridge City over-75s Cohort (CC75C) study collaboration. Inability to get up after falling, subsequent time on floor, and summoning help: Prospective cohort study in people over 90. BMJ, 2008, 337, a2227.

  4. Heinbuchner, B., Hautzinger, M., Becker, C., and Pfeif­fer, K. Satisfaction and use of personal emergency response systems. Z. Gerontol. Geriatr., 2010, 43, 219–223.

  5. Robinovitch, S. N., Brumer, R., and Maurer, J. Effect of the “squat protective response” on impact velocity during backward falls. J. Biomech., 2004, 37, 1329–1337.

  6. Kangas, M., Konttila, A., Winblad, I., and Jämsä, T. Determina­tion of simple thresholds for accelerometry-based parameters for fall detection. In Proc. 29th Annual International Conference of IEEE Eng. Med. Biol. Soc. Lyon, 2007, 1367–1370.

  7. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., and Jämsä, T. Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture, 2008, 28, 285–291.

  8. Kangas, M., Vikman, I., Wiklander, J., Lindgren, P., Nyberg, L., and Jämsä, T. Sensitivity and specificity of fall detection in people aged 40 years and over. Gait Posture, 2009, 29, 571–574.

  9. Kangas, M., Vikman, I., Nyberg, L., Korpelainen, R., Lind­blom, J., and Jämsä, T. Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects. Gait Posture, 2012, 35, 500–505.

10. Kangas, M., Korpelainen, R., Vikman, I., Nyberg, L., and Jämsä, T. Sensitivity and false alarm rate of a fall sensor in long-term fall detection in the elderly. Gerontology, 2014. Forthcoming.

11. Vihriälä, E., Saarimaa, R., Myllylä, R., and Jämsä, T. A device for long term monitoring of impact loading on the hip. Molecul. Quantum Acoust., 2003, 24, 211–224.

Back to Issue