eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Weak electron emission current for characterization of nanomaterials, gas and radiation sensing towards medical applications; pp. 346–354

Full article in PDF format | doi: 10.3176/proc.2014.3.09

Yuri Dekhtyar


Rapid development of nanomaterials opens a wide horizon for their applications, medicine being one of them. Nanomaterials and nanodevices are in use both in the human body and as medical nanosensors. Reliable employment of materials requires trustworthy detection of their properties. Characterization of both the nanomaterials and nanosensors should be supplied at the nanoscaled dimension. To avoid disturbing gentle nanoobjects, measurements of them with contactless techniques are preferable. Low energy electron has a mean free path in a solid that is of the order of nanoscale. Therefore, a prethreshold (energy of the emitting electron is close to the electron work function) electron emission contactless spectroscopy could become an efficient instrument both for characterization of nanostructured materials and nanosensing. Weak emission (~ 10–16…10–15 Q/cm2) of electrons from a solid does not give a significant feedback to measurements in the sense of the negligible inducted electrical charge at the material surface (the density of the surface electrons in the solid is around 1014 cm–2). The paper reviews photo-, dual-, and exo-electron emission fundamentals and their applications for the characterization of nanoobjects (concentration of pointlike imperfections, their annealing, migration, surface charge of nanoparticles, energy gap, electron density of states, thickness of thin films and interfaces between them and the substrate) as well as gas and ionizing radiation. The ways for medical applications are indicated.


  1. &sid=9569DAF0CCF1B2A145F5D2FF6BABDDBA.WlW7NKKC52nnQNxjqAQrlA%3a40&sot=a&sdt=a&sl=23&s=Medical+gas+nanosensors&origin=searchadvanced&txGid=9569DAF0CCF1B2A145F5D2FF6BABDDBA.WlW7NKKC52nnQNxjqAQrlA%3a4; accessed 22 February 2014.

  2. sort=plf-f&src=s&sid=9569DAF0CCF1B2A145F5D2 FF6BABDDBA.WlW7NKKC52nnQNxjqAQrlA%3a420&sot=a&sdt=a&sl=31&s=medical+radiation+nanodosimetry&origin=searchadvanced&txGid=9569DAF0CCF1B2A145F5D2FF6BABDDBA.WlW7NKKC52nnQNxjqAQrlA%3a42; accessed 22 February 2014.

  3. sort=plf-f&src=s&sid=9569DAF0CCF1B2A145F5D 2FF6BABDDBA.WlW7NKKC52nnQNxjqAQrlA%3a540&sot=a&sdt=a&sl=42&s=medical+nanomaterials+and+characterization&origin=searchadvanced&txGid=9569DAF0CCF1B2A145F5D2FF6BABDDBA.WlW7NKKC52nnQNxjqAQrlA%3a54; accessed 22 February 2014.

  4. Fomenko, V. S. Emission Properties of Materials. Naukova Dumka, Kiev, 1981 (in Russian).

  5. Ibach, H. (ed.). Electron Spectroscopy for Surface Analysis. Springer-Verlag, New York, 1977.

  6. Kinding, N. B. and Spicer, W. E. Band structure of cadmium sulphide photoemission studies. Phys. Rev., 1963, 138, A561–A576.

  7. Dekhtyar, Yu. Emission of weak electrons towards sensing nanoobjects. In Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism. (Vokoshta, A., Braman, E., and Susman, P., eds). Springer, 2012, 171–178.

  8. Dobrecov, L. N. and Gomoyunova, M. V. Emission Electronics. Nauka, Moscow, 1966 (in Russian).

  9. Dekhtyar, Yu. D. and Sagalovich, G. L. Exoelectron emission of monocrystalline silicon and its practical application. Proc. USSR Academy of Sci., Physical Ser., 1988, 52, 1611–1613 (in Russian).

10. Kortov, V. S., Shifrin, V. P., and Gaprindashvili, A. I. Exo­electron spectroscopy of semiconductors and insulators. Microelectronics, 1975, 8, 28–49 (in Russian).

11. Nesterenko, B. A. and Cnitko, O. V. Physical Properties of Atomic Clean Surface of Semiconductors. Naukova Dumka, Kiev, 1983 (in Russian).

12. Volkenstein, F. F. Electron Processes on Semiconductors Surface During Chemosorption. Nauka, Moscow, 1987 (in Russian).

13. Arvin, H., Bogucharska, T., Dekhtyar, Yu., Hill, R. M., Katashev, A., Pavlenko, A. et al. Electronic transitions and structural changes in bone. Latvian J. Phys. Techn. Sci., 2000, 6(S), 50–55.

14. Dekhtyar, Yu. D. and Vinjarskaja, J. A. Exoelectron analysis of amorphous silicon. J. Appl. Phys., 1994, 75, 4201–4207.

15. Rosenman, G. I., Rez, I. S., Chepelev, Yu. L., and Angert, N. B. Exoemission of defected surface of lithium tantalite. J. Techn. Phys., 1981, 51, 404–408 (in Russian).

16. Dekhtyar, Yu. D. Exoelectron Spectroscopy of Point Type Defects in Semiconductors. Riga Technical University, Riga, 1993 (in Russian).

17. Polyakova, A. L. Deformation of Semiconductors and Semiconductor Devises. Energiya, Moscow, 1979 (in Russian).

18. Balodis, A., Dekhtyar, Yu., and Sagalovich, G. Emission local testing of mechanical stresses in surface layer of silicon. Proc. SPIE, 1994, 2334, 244–249.

19. Dekhtyar, Yu. Photo- dual and exoelectron spectroscopy to characterize nanostructures. In Functionalized Nano­scale Materials, Devices, and Systems for Chem.-Bio Sensors, Photonics, and Energy Generation and Storage. Springer, 2008, 169–183.

20. Dekhtyar, Yu. D., Noskov, V. A., Savvaitova, J. A., and Sagalovich, G. L. Generation and annealing of vacancy complexes in the monocrystalline Si surface layer. Phys. and Techn. of Semiconductors, 1990, 3, 492–496 (in Russian).

21. Rosenman, G., Naich, M., Molotskii, M., Dekhtyar, Yu., and Noskov, V. Exoelectron emission spectroscopy of silicon nitride thin films. Appl. Phys. Lett., 2002, 80, 2743–2745.

22. Dekhtyar, Yu., Bystrov, V., Bystrova, A., Dindune, A. Yu., Katashev, A., Khlusov, I. et al. Engineering of hydroxyapatite cell adhesion capacity. IFMBE Proc., 2012, 38, 182–185.

23. Bystrov, V., Bystrova, N., Dekhtyar, Yu., Filippov, S., Karlov, A., Katashev, A. et al. Size depended electrical properties of hydroxyapatite nanoparticles. IFMBE Proc., 2006, 14, CD version. Springer, Seoul, 3149–3150.

24. Dekhtyar, Yu., Dvornichenko, M. V., Karlov, A. V., Khlu­sov, I. A., Polyaka, N., Sammons, R., and Zayt­sev, K. V. Electrically functionalized hydroxyapatite and calcium phosphate surfaces to enhance im­mobilization and proliferation of osteoblasts in vitro and modulate osteogenesis in vivo. IFMBE Proc., 2009, 25, 245–248.

25. Arvin, H., Bogucharska, T., Dekhtyar, Yu., Hill, R. M., Katashev, A., Pavlenko, A. et al. Electronic transitions and structural changes in bone. Latvian J. Phys. and Techn. Sci., 2000, 6(S), 50–55.

26. Dekhtyar, Yu., Katashev, A., Katasheva, J., and Ozolante, I. Effect of optical radiation influence on bone defect reconstruction in rabbits. IFMBE Proc., 2008, 20, 357–360.

27. Wang, C. and Sahay, P. Breath analysis using laser spectro­scopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors, 2009, 9, 8230–8262dot_trans.

28. Shirau, M. and Touhaza, K. The scent of disease volatile organic compounds of the human body related to disease and disorder. J. Biochem., 2011, 3, 257–266.

29. Mandis, A. The diagnostic potential of breath analysis. Clin. Chem., 1983, 29, 5–15.

30. Vaseashta, A., Braman, E., Susmann, P., Dekhtyar, Yu., and Perovicha, K. Sensors for water safety and security. Surface Eng. Appl. Electrochem., 2012, 48, 478–486.

31. Dekhtyar, Yu., Krumpane, D., Perovicha, K., Reisfeld, R., Romanova, M., Saraidarov, T., and Surkova, I. Electron emission standed nanodosimetry and gas detection. In Advanced Sensors for Safety and Security (Vaseashta, A. and Khudaverdyan, S., eds), pp. 173–180. Springer, Netherlands, 2013.

32. Maity, T. K., Sharma, S. L., and Chourasiya, G. The real-time gamma radiation dosimetry with TeO2 thin films. Radiat. Meas., 2012, 47, 145–148.

33. Arshak, K. Thin and thick films of metal oxides and metal phthalocyanines as gamma radiation dosimeters. IEEE Trans. Nucl. Sci., 2004, 51, 2250–2255.

34. Dekhtyar, Yu. Emission of weak electrons: Dosimetry of nanovolumes. Radiat. Meas., 2013, 55, 34–37.

35. Sashchiuk, A., Lifshitz, E., Reisfeld, R., Saraidarov, T., Zelner, M., and Willenz, A. Optical and conductivity properties of PbS nanocrystals in amorphous zirconia sol-gel films. J. Sol-Gel Sci. Techn., 2002, 24, 31–38.

Back to Issue