eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Column water vapour: an intertechnique comparison of estimation methods in Estonia; pp. 37–47

Full article in PDF format | doi: 10.3176/proc.2014.1.07

Hannes Keernik, Hanno Ohvril, Erko Jakobson, Kalev Rannat, Andres Luhamaa


Despite different techniques for the estimation of column integrated water vapour (precipitable water, PW) no method has yet been identified as the most accurate or the reference one. In this work we report intercomparisons between four PW estimation methods – radiosonde, Aerosol Robotic Network (AERONET), Global Positioning System (GPS), and High Resolu­tion Limited Area Model (HIRLAM). Two intensive observation periods at Tõravere, Estonia, were used: 22 June-6 November 2008 and 9-12 August 2010. During the longer campaign, only observations by GPS, AERONET, and HIRLAM were performed. An agreement with average difference less than 2.2% among all three methods was established. However, compared to HIRLAM and GPS, the AERONET method overestimated PW by 5–9% at PW < 12 mm and underestimated it by 6–10% at PW > 25 mm. In addition, the consistency test applied indicated that previously reported uncertainty in AERONET-measured PW is too high. During the shorter but more complex campaign, data obtained with all four methods were available. Although the average differences between PW from radiosonde and three other methods were < 5%, the discrepancy between single measurements reached 33%. Relatively low temporal and spatial resolution of the HIRLAM grid as well as launching sparseness of radiosondes caused higher scatter from the other methods. The study suggests that besides radiosonde, as a traditional meteorological tool, the most reliable PW estimation can be made by GPS.


Askne, J. and Nordius, H. 1987. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 22, 379–386.

Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H. 1992. GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97, 15787–15801.

Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H. 1994. GPS meteorology: mapping zenith wet delay onto pre­cipitable water. J. Appl. Meteorol., 33, 379–386.<0379:GMMZWD>2.0.CO;2

Campmany, E., Bech, J., Rodríguez-Marcos, J., Sola, Y., and Lorente, J. 2010. A comparison of total precipitable water measurements from radiosonde and sunphoto­meters. Atm. Res., 97, 385–392.

Carlund, T., Landelius, T., and Josefsson, W. 2003. Com­parison and uncertainty of aerosol optical depth estimates derived from spectral and broadband measure­ments. J. Appl. Meteorol., 42, 1598–1610.<1598:CAUOAO>2.0.CO;2

Cucurull, L., Navascues, B., Ruffini, G., Elósegui, P., Rius, A., and Vilà, J. 2000. The use of GPS to validate NWP systems: the HIRLAM model. J. Atmos. Ocean. Tech., 17, 773–787.<0773:TUOGTV>2.0.CO;2

Dach, R., Hugentobler, U., Fridez, P., and Meindl, M. (eds). 2007. Bernese GPS Software Version 5.0. Astro­nomical Institute, University of Bern, Bern.

De Mazière, M., De Backer, H., Carleer, M., Mahieu, E., Demoulin, P., Duchatelet, P., Cheymol, A., Clemer, K., Coheur, P. F., Dils, B., Fally, S., Hendrick, F., Her­mans, C., Kruglanski, M., Mangold, A., Vander Auwera, J., Van Malderen, R., Van Roozendael, M., and Vigouroux, C. 2009. Advanced Exploitation of Ground-Based Measurements for Atmospheric Chemistry and Climate Applications “AGACC”. Final Report Phase 1, Brussels, Belgian Science Policy.

Emardson, R., Johansson, J. M., and Elgered, G. 1998. Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers. J. Geophys. Res., 103, 1807–1820.

Fowle, F. E. 1912. The spectroscopic determination of aqueous vapor. Astrophys. J., 35, 149–162.

Glowacki, T. J., Penna, N. T., and Bourke, W. P. 2006. Valida­tion of GPS-based estimates of integrated water vapour for the Australian region and identification of diurnal variability. Aust. Meteorol. Mag., 55, 131148.

GRAW, 2013.­sondes0/dfm-060/ (retrieved 11 December 2013).

Halthore, R. N., Eck, T. F., Holben, B. N., and Markham, B. L. 1997. Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band. J. Geophys. Res., 102, 4343–4352.

Herring, T. A., King, R. W., and McClusky, S. C. 2010. GAMIT Reference Manual, Release 10.4. Massa­chusetts Institute of Technology, Cambridge.

Holben, B. 2005. Version 2 processing announced. AERONET Quarterly, July 2005, Operational/AQ_July_2005.pdf/ (retrieved 4 May 2013).

Holben, B. N., Tanré, D., Smirnov, A., EckT. F., SlutskerI., AbuhassanN., NewcombW. W., SchaferJ. S., ChatenetB., LavenuF., KaufmanY. J., and Vande Castle, J. 2001. An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J. Geophys. Res., 106, 12067–12098.

Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P. W., and Vömel, H. 2010. Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products. Atm. Meas. Tech., 3, 1217–1231.

[IOS] International Organization for Standardization. 1995. Guide to the Expression of Uncertainty in Measure­ment.

Jakobson, E. 2009. Spatial and temporal variability of atmo­spheric column humidity. Diss. Geophys. Univ. Tartu., 23.

Jakobson, E., Ohvril, H., and Elgered, G. 2009. Diurnal variability of precipitable water in the Baltic region, impact of transmittance of the direct solar radiation. Boreal Environ. Res., 14, 45–55.

Kwon, H.-T., Iwabuchi, T., and Lim, G.-H. 2007. Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean Peninsula. J. Meteorol. Soc. Japan, 85, 733–746.

Maurellis, A. and Tennyson, J. 2003. The climatic effects of water vapour. Physics World, May, 29–33.

McArthur, L. J. B. 2005. Baseline Surface Radiation Network (BSRN). WMO/TD-No. 1274, WCRP/WMO.

Ning, T. 2012. GPS Meteorology: With Focus on Climate Application. Dissertation. Chalmers University of Technology, Göteborg.

Ning, T., Haas, R., Elgered, G., and Willén, U. 2012. Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden. J. Geod., 86, 565–575.

Saastamoinen, J. 1972. Atmospheric correction for the tropo­sphere and stratosphere in radio ranging of satellites. In The Use of Artificial Satellites for Geodesy (Henrik­sen, S. W. et al., eds), Geophys. Monogr. Ser., 15, 247–251.

Smirnov, A., Holben, B. N., Lyapustin, A., Slutsker, I., and Eck, T. F. 2004. AERONET processing algorithms refine­ment. AERONET Workshop, May 10–14, El Arenosillo, Spain, spain2004/presentations/Smirnov_Algorithm.ppt (retrieved 1 May 2013).

Song, D.-S. and Grejner-Brzezinska, D. A. 2009. Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event. Earth Planets Space, 61, 1117–1125.

Thomas, I. D., King, M. A., Clarke, P. J., and Penna, N. T. 2011. Precipitable water vapor estimates from homo­geneously reprocessed GPS data: an intertechnique comparison in Antarctica. J. Geophys. Res., 116, D04107.

Tregoning, P., Boers, R., O’Brien, D., and Hendy, M. 1998. Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res., 103, 28701–28710.

Wang, J., Zhang, L., Dai, A., Van Hove, T., and Van Baelen, J. 2007. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measure­ments. J. Geophys. Res., 112, D11107.

Webb, F. H. and Zumberge, J. F. 1993. An introduction to the GIPSY/OASIS II. JPL Publ., D11088.

Yang, X., Sass, B. H., Elgered, G., Johansson, J. M., and Emardson, T. R. 1999. A comparison of precipitable water vapor estimates by an NWP simulation and GPS observations. J. Appl. Meteorol., 38, 941–956.<0941:ACOPWV>2.0.CO;2

Back to Issue