eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Principal component analysis of HPLC–MS/MS patterns of wheat (Triticum aestivum) varieties; pp. 86–92

Full article in PDF format | doi: 10.3176/proc.2014.1.11

Tuuli Levandi, Tõnu Püssa, Merike Vaher, Anne Ingver, Reine Koppel, Mihkel Kaljurand


Untargeted metabolomic strategy was chosen to investigate as many small metabolites as possible in a collection of 13 varieties of conventionally grown spring and winter wheat and organic wheat (Triticum aestivum). Metabolites were separated by high-performance liquid chromatography on a reversed-phase column (RP–HPLC) coupled with electrospray ionization tandem mass spectrometry (ESI–MS/MS). The procedure includes extraction of metabolites followed by chromatographic separation using the linear gradient of aqueous formic acid and acetonitrile with subsequent identification of compounds by MS/MS. Discrimination of the metabolomic patterns of different wheat varieties was achieved by principal component analysis (PCA). Results of PCA indicated clear differences in the patterns of wheat varieties.
The winter wheat grown in conventional conditions and the spring wheat grown in organic conditions differed from the spring wheat grown in conventional conditions by the higher content of carbohydrates. It could be explained by osmotic stress resistance. Varieties grown under organic conditions could be well distinguished from others by the results of PCA, which points to the existence of an impact of different farming systems.


  1. Lammerts van Bueren, E. T. Challenging new concepts and strategies for organic plant breeding and propagation. In Eucarpia Leafy Vegetables 2003. Centre for Genetic Resources, Wageningen, 2003, 17–22.

  2. Yu, L. (ed.). Wheat Antioxidants. John Wiley & Sons, Inc, New Jersey: E-Publishing Inc, 2007.

  3. Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G. et al. Developments in breeding cereals for organic agriculture. Euphytica, 2008, 163, 323–346.

  4. Mpofu, A., Sapirstein, H. D., and Beta, T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agr. Food Chem., 2006, 54, 1265–1270.

  5. Irmak, S., Jonnala, R. S., and MacRitchie, F. Effect of genetic variation on phenolic acid and policonasol contents of Pegaso wheat lines. J. Cereal Sci., 2008, 48, 20–26.

  6. Vaher, M., Matso, K., Levandi, T., Helmja, H., and Kalju­rand, M. Phenolic compounds and antioxidant activity of the bran, flour and whole grain of different wheat varieties. Proc. Chem., 2010, 2, 76–82.

  7. Ingver, A., Tamm, I., and Tamm, Ü. Effect of organic and conventional production on yield and quality of spring cereals. Agron. Res., 2009, 7, 552–527.

  8. Fernie, A. R. and Schauer, N. Metabolomics-assisted breed­ing: a viable option for crop improvement? Trends Genet., 2008, 25, 39–48.

  9. Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D., and Rodrick, G. E. Metabolomic analysis in food science. A review. Trends Food Sci. Technol., 2009, 20, 557–566.

10. Levandi, T., Leon, C., Kaljurand, M., Garcia-Canas, V., and Cifuentes, A. Capillary electrophoresis time-of-flight mass spectrometry for comparative meta­bolomics of transgenic versus conventional maize. Anal. Chem., 2008, 80, 6329–6335.

11. García-Villalba, R., León, C., Dinelli, G., Segura-Carretero, A., Fernández-Gutiérrez, A., Garcia-Cañas, V., and Cifuentes, A. Comparative meta­bolomic study of transgenic versus conventional soybean using capillary electrophoresis–time-of-flight mass spectro­metry. J. Chromatogr. A, 2008, 1195, 164–173.

12. Dinelli, G., Segura Carretero, A., Di Silvestro, R., Marotti, I., Fu, S., Benedettelli, S. et al. Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A, 2009, 1216, 7229–7240.

13. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., and Willmitzer, L. Metabolite pro­filing for plant functional genomics. Nat. Biotechnol., 2000, 18, 1157–1161.

14. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Thomas, L., Willmitzer, L., and Fernie, A. R. Meta­bolomic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 2001, 13, 11–29.

15. Grata, E., Boccard, J., Guillarme, D., Glauser, G., Carrupt, P. A., Farmer, E. E. et al. UPLC-TOF-MS for plant metabolomics: a sequential approach for wound marker analysis in Arabidopsis thaliana. J. Chromatogr. B, 2008, 871, 261–270.

16. Krishnan, P., Kruger, N. J., and Ratsliffe, R. G. Metabolite fingerprinting and profiling in plants using NMR. J. Experim. Bot., 2005, 56, 255–265.

17. Last, R. L., Jones, A. D., and Shachar-Hill, Y. Towards the plant metabolome and beyond. Nat. Rev. Mol. Cell Biol., 2007, 8, 167–174.

18. Warwick, B. D. and David, I. E. Metabolomics: current analytical platforms and methodologies. Anal. Chem., 2005, 24(4), 285–294.

19. Kvasnicka, F. Capillary electrophoresis in food authenticity. J. Sep. Sci., 2005, 28, 813–825.

20. Oikawa, A., Matsuda, F., Kusano, M., Okazaki, Y., and Saito, K. Rice metabolomics. Rice, 2008, 1, 63–71.

21. Berrueta, L. A., Alonso-Salces, R. M., and Heberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A, 2007, 1158, 196–214.

22. Levandi, T., Püssa, T., Vaher, M., Toomik, P., and Kalju­rand, M. Oxidation products of free poly­unsaturated fatty acids in wheat varieties. Eur. J. Lipid Sci. Technol., 2009, 111(7), 715–722.

23. Zörb, C., Langenkämper, G., Betsche, T., Niehaus, K., and Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agr. Food Chem., 2006, 54, 8301–8306.

24. Taylor, V. F., March, R. E., Longerich, H. P., and Stadey, C. J. A mass spectrometric study of glucose, sucrose and fructose using an inductively coupled plasma and electrospray ionization. Int. J. Mass Spectrom., 2005, 243, 71–84.

25. Dinelli, G., Segura Carretero, A., Di Silvestro, R., Marotti, I., Arraez-Roman, D., Benedettelli, S. et al. Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromato­graphy coupled with time-of-flight mass spectrometry. J. Chromatogr. A, 2011, 1218, 7670–7768.

26. Asenstorfer, R. E., Wang, Y., and Mares, D. J. Chemical structure of flavonoid compounds in wheat (Triticum aestivum L.) flour that contribute to the yellow colour of Asian alkaline noodles. J. Cereal Sci., 2006, 43, 108–119.

27. Gu, D., Yang, Y., Abdulla, R., and Aisa, H. A. Charac­terization and identification of chemical compositions in the extract of Artemisia rupestris L. by liquid chromatography coupled to quadruple time-of-flight tandem mass spectrometry. Rapid Comm. Mass Spectrom., 2012, 26, 83–100.

28. Figueirinha, A., Paranhos, A., Perez-Alonso, J. J., Santos-Buelga, C., and Batista, M. T. Cymbopogon citratus leaves: characterisation of flavonoids by HPLC-PDA-ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem., 2008, 110, 718–728.

29. Li, W., Qiu, Y., Patterson, C. A., and Beta, T. The analysis of phenolic constituents in glabrous canaryseed groats. Food Chem., 2011, 127, 10–20.

Back to Issue