ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

On some operator equations in the space of analytic functions and related questions; pp. 81–87

Full article in PDF format | doi: 10.3176/proc.2013.2.01

Authors
Mehmet Gürdal, Filiz Şöhret

Abstract

We investigate extended eigenvalues, extended eigenvectors, and cyclicity problems for some convolution operators. By using the Duhamel product technique, we also estimate the norm of the inner derivation operator ΔA.


References

  1. Biswas, A., Lambert, A., and Petrovic, S. Extended eigenvalues and the Volterra operator. Glasgow Math. J., 2002, 44, 521–534.
http://dx.doi.org/10.1017/S001708950203015X

  2. Bourdon, P. S. and Shapiro, J. H. Intertwining relations and extended eigenvalues for analytic Toeplitz operators. Ill. J. Math., 2008, 52, 1007–1030.

  3. Domanov, I. Yu. and Malamud, M. M. On the spectral analysis of direct sums of Riemann–Liouville operators in Sobolev spaces of vector functions. Int. Equat. Oper. Theory, 2009, 63, 181–215.
http://dx.doi.org/10.1007/s00020-009-1657-2

  4. Gürdal, M. Description of extended eigenvalues and extended eigenvectors of integration operator on the Wiener algebra. Expo. Math., 2009, 27, 153–160.
http://dx.doi.org/10.1016/j.exmath.2008.10.006

  5. Gürdal, M. On the extended eigenvalues and extended eigenvectors of shift operator on the Wiener algebra. Appl. Math. Lett., 2009, 22, 1727–1729.
http://dx.doi.org/10.1016/j.aml.2009.06.008

  6. Karaev, M. T. Invariant subspaces, cyclic vectors, commutant and extended eigenvectors of some convolution operators. Methods Functional Anal. Topology, 2005, 11, 48–59.

  7. Karaev, M. T. On some applications of ordinary and extended Duhamel products. Siberian Math. J., 2005, 46, 431–442 (translated from Sibirsk. Mat. Zh., 2005, 46, 553–566).

  8. Karaev, M. T. and Saltan, S. A Banach algebra structure for the Wiener algebra W(D) of the disc. Complex Variables Theory Appl., 2005, 50, 299–305.
http://dx.doi.org/10.1080/02781070500032911

  9. Malamud, M. M. Similarity of Volterra operators and related problems in the theory of differential equations of fractional orders. Trans. Moscow Math. Soc., 1995, 56, 57–122 (translated from Trudy Moskov. Mat. Obshch., 1994, 55, 73–148).

10. Malamud, M. M. Invariant and hyperinvariant subspaces of direct sums of simple Volterra operators. Oper. Theory Adv. Appl., 1998, 102, 143–167.

11. Nagnibida, N. I. Description of commutants of integration operator in analytic spaces. Siberian Math. J., 1981, 22, 748–752 (translated from Sibirsk. Mat. Zh., 1981, 22, 127–131).

12. Tkachenko, V. A. Invariant subspaces and unicellularity of operators of generalized integration in spaces of analytic functionals. Math. Notes, 1997, 22, 221–230.

13. Wigley, N. M. The Duhamel product of analytic functions. Duke Math. J., 1974, 41, 211–217.
http://dx.doi.org/10.1215/S0012-7094-74-04123-4


Back to Issue