eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Does the growth rate of drifting Furcellaria lumbricalis and Coccotylus truncatus depend on their proportion and density?; pp. 141–147
PDF | doi: 10.3176/proc.2013.2.08

Tiina Paalme, Jonne Kotta, Priit Kersen

The West Estonian Archipelago Sea hosts a loose-lying red macroalgal community dominated by Furcellaria lumbricalis and Coccotylus truncatus. The community is truly unique in European seas. In factorial field experiments we evaluated separate and interactive effects of algal density and the proportions of F. lumbricalis and C. truncatus on their growth rates in a set of monospecific and mixed communities. Our experiment demonstrated that the growth of red algae was density dependent and that increased algal densities resulted in a fall of daily growth rates. An elevated growth of the red algae was observed at their lower proportions in the community. A potential mechanism behind the observed patterns is the light availability for photosynthesis, i.e. light utilization is more efficient in mixed communities.



Albrecht, A. S. 1998. Soft bottom versus hard rock: community ecology of macroalgae on intertidal mussel beds in the Wadden Sea. J. Exp. Mar. Biol. Ecol., 229, 85–109.

Ang, P. O. and De Wreede, R. E. 1992. Density dependence in a population of Fucus distichus. Mar. Ecol. Progr. Ser., 90, 169–181.

Austin, A. P. 1960. Observations on Furcellaria fastigiata (L.) Lam. forma aegagropila Reinke in Danish waters together with a note on other unattached algal forms. Hydrobiologia, 14, 255–277.

Binzer, T. and Sand-Jensen, K. 2002. Production in aquatic macrophyte communities: a theoretical and empirical study of the influence of spatial light distribution. Limnol. Oceanogr., 47, 1742–1750.

Bird, C. J., Saunders, G. W., and McLachlan, J. 1991. Biology of Furcellaria lumbricalis (Hudson) Lamouroux (Rhodophyta: Gigartinales), a commercial carrageenophyte. J. Appl. Phycol., 3, 61–82.

Choi, H. G. and Norton, T. A. 2005. Competition and facilita­tion between germlings of Ascophyllum nodosum and Fucus vesiculosus. Mar. Biol., 147, 525–532.

Creed, J. C., Norton, T. A., and Kain, J. M. 1996. Are neighbours harmful or helpful in Fucus vesiculosus populations? Mar. Ecol. Progr. Ser., 133, 191–201.

Creed, J. C., Norton, T. A., and Kain, J. M. 1997. Intraspecific competition in Fucus serratus germlings: the interaction of light, nutrients and density. J. Exp. Mar. Biol. Ecol., 212, 211–223.

Duarte, C. M. 2002. The future of seagrass meadows. Environ. Conserv., 29, 192–206.

Dudgeon, S. R., Steneck, R. S., Davison, I. R., and Vadas, R. L. 1999. Coexistence of similar species in a space-limited intertidal zone. Ecol. Monogr., 69, 331–352.[0331:COSSIA]2.0.CO;2

Enright, C. T. 1979. Competitive interaction between Chondrus crispus (Florideophyceae) and Ulva lactuca (Chlorophyceae) in Chondrus aquaculture. Proc. Int. Seaweed Symp., 9, 209–218.

Ince, R., Hyndes, G. A., Lavery, P. S., and Vanderklift, M. A. 2007. Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuar. Coast. Shelf S., 74, 77–86.

Indergaard, M. and Knutsen, S. H. 1990. Seasonal differences in ash, carbon, fibre and nitrogen components of Furcellaria lumbricalis (Gigartinales, Rhodophycea), Norway. Bot. Mar., 33, 327–334.

Kersen, P., Orav-Kotta, H., Kotta, J., and Kukk, H. 2009. Effect of abiotic environment on the distribution of attached and loose-lying red alga Furcellaria lumbricalis in the Estonian coastal sea. Estonian J. Ecol., 58, 245–258.

Kim, H. J. 2002. Mechanisms of competition between canopy-forming and turf-forming intertidal algae. Algae, 17, 33–39.

Kotta, J. and Orav, H. 2001. Role of benthic macroalgae in regulating macrozoobenthic assemblages in the Väinameri (north-eastern Baltic Sea). Ann. Zool. Fenn., 38, 163–171.

Kotta, J., Jaanus, A., and Kotta, I. 2008a. Haapsalu and Matsalu Bay. In Ecology of Baltic Coastal Waters (Schiewer, U., ed.). Ecological Studies, 197, pp. 245–258. Springer, Berlin.

Kotta, J., Paalme, T., Kersen, P., Martin, G., Herkül, K., and Möller, T. 2008b. Density dependent growth of the red algae Furcellaria lumbricalis and Coccotylus truncatus in the West Estonian Archipelago Sea, northern Baltic Sea. Oceanologia, 50, 577–585.

Lauringson, V., Kotta, J., Kersen, P., Leisk, Ü., Orav-Kotta, H., and Kotta, I. 2012. Use case of biomass-based benthic invertebrate index for brackish waters in connection to climate and eutrophication. Ecol. Indic., 12, 123–132.

Lobban, C. S. and Harrison, P. J. 2000. Seaweed Ecology and Physiology. Cambridge University Press, Cambridge.

Martin, G., Paalme, T., and Torn, K. 2006a. Seasonality pattern of biomass accumulation in a drifting Furcellaria lumbricalis community in the waters of the West Estonian Archipelago, Baltic Sea. J. Appl. Phycol., 18, 557–563.

Martin, G., Paalme, T., and Torn, K. 2006b. Growth and production rates of loose-lying and attached forms of the red algae Furcellaria lumbricalis and Coccotylus truncatus in Kassari Bay, the West Estonian Archipelago Sea. Hydrobiologia, 554, 107–115.

Menge, B. A. and Sutherland, J. P. 1987. Community regula­tion: variation in disturbance, competition and preda­tion in relation to environmental stress and recruit­ment. Am. Nat., 130, 730–757.

Micheli, F. and Peterson, C. H. 1999. Estuarine vegetated habitats as corridors for predator movements. Conserv. Biol., 13, 869–881.

Middelboe, A. L. and Binzer, T. 2004. Importance of canopy structure on photosynthesis in single- and multi-species assemblages of marine macroalgae. Oikos, 107, 422–432.

Norton, T. A. and Mathieson, A. C. 1983. The biology of unattached seaweeds. In Progress in Phycological Research, Vol. 2 (Round, F. E. and Chapman, D. J., eds), pp. 333–386. Elsevier, Amsterdam.

Paalme, T., Kotta, J., Kersen, P., Martin, G., Kukk, H., and Torn, K. 2011. Inter-annual variations in biomass of loose lying algae Furcellaria-Coccotylus community: the relative importance of local versus regional environ­mental factors in the West Estonian Archipelago. Aq. Bot., 95, 146–152.

Pianka, E. R. 1971. Species diversity. In Topics in the Study of Life (Kramer, A., ed.), pp. 401–406. Harper & Row, New York.

Piazzi, L. and Ceccherelli, G. 2002. Effects of competition between two introduced Caulerpa. Mar. Ecol. Progr. Ser., 225, 189–195.

Reed, D. C. 1990. An experimental evaluation of density dependence in a subtidal algal population. Ecology, 71, 2286–2296.

Ricklefs, R. E. and Schluter, D. 1993. Species diversity: regional and historical influences. In Species Diversity in Ecological Communities: Historical and Geo­graphical Perspectives (Ricklefs, R. E. and Schluter, D., eds), pp. 350–364. University of Chicago Press, Chicago.

Rivera, M. and Scrosati, R. 2008. Self-thinning and size inequality dynamics in a clonal seaweed (Sargassum lapazeanum, Phaeophyceae). J. Phycol., 44, 45–49.

Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.

Russell, G. and Fielding, A. H. 1974. The competitive properties of marine algae in culture. J. Ecol., 62, 689–698.

Sand-Jensen, K., Binzer, T., and Middelboe, A. L. 2007. Scaling of photosynthetic production of aquatic macrophytes – a review. Oikos, 116, 280–294.

Sokal, R. R. and Rohlf, F. J. 1981. Biometry. W. H. Freeman and Company, San Francisco.

Trei, T. 1978. The physiognomy and structure of the sublittoral macrophyte communities in Kassari Bay (an area between the Isles of Hiiumaa and Saaremaa). Kieler Meeresforschungen, 4, 117–121.

Tuvikene, R. 2009. Functional Dependencies of the Chemical Composition and Structure in the Baltic Sea Algal Communities. PhD thesis. Tallinn University, Tallinn.

Wallentinus, I. 1984. Partitioning of nutrient uptake between annual and perennial seaweeds in a Baltic archipelago area. Hydrobiologia, 116–117, 363–370.

Weller, D. E. 1987. A reevaluation of the –3/2 power rule of plant self-thinning. Ecol. Monogr., 57, 23–43.


Back to Issue