eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Li2B4O7:Mn for dosimetry applications: traps and mechanisms; pp. 279–295
PDF | doi: 10.3176/proc.2012.4.03

Arno Ratas, Mikhail Danilkin, Mihkel Kerikmäe, Aime Lust, Hugo Mändar, Viktor Seeman, Georg Slavin

Thermoluminescence curves, kinetics, and Electron Paramagnetic Resonance (EPR) data were compared for Li2B4O7:Mn and Li2B4O7:Mn,Be radiation detectors. Analysis of the experimental data, both our own and published by other investigators, in connection with features of the crystal lattice structure allowed us to build models of traps and thermo­luminescence mechanisms. The thermoluminescence peaks used in dosimetry are connected with the release of holes trapped at bridging oxygen near Mn2+ (or Be2+), substituting for tetrahedrally coordinated B3+. The luminescence occurs at Mn2+ substituting for Li+. Two types of Mn2+ centres give different luminescence and EPR spectra. The effects of Mn2+ interaction with surrounding oxygen atoms are discussed both for the Mn2+ luminescence band and for the hyperfine structure of EPR. Kinetics measurements revealed an additional “hopping” barrier for a hole to get to a recombination centre after it has been released from a trap. A simple kinetics model is suggested to describe the experimental data. The studies of optical stimulation spectra and optically stimulated emptying of traps demonstrated the possibility of using Li2B4O7:Mn and Li2B4O7:Mn,Be radiation detectors with optically stimulated readout systems.



  1. El-Faramawy, N. A., Göksu, H. Y., and Panzer, W. Thermo­luminescence dosimetric properties of a new thin beta detector (LiF:Mg, Cu, P; GR-200F) in comparison with highly sensitive Al2O3:C beta dosimeters. J. Radiol. Prot., 2004, 24, 273–282.

  2. Mobit, P., Agyingi, E., and Sandison, G. Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams. Radiat. Prot. Dosim., 2006, 119, 497–499.

  3. Maia, A. F. and Caldas, L. V. E. Response of TL materials to diagnostic radiology X radiation beams. Appl. Radiat. Isot., 2010, 68, 780–783.

  4. Selvam, T. P. and Keshavkumar, B. Monte Carlo investigation of energy response of various detector materials in 125I and 169Yb brachytherapy dosimetry. J. Appl. Clin. Med. Phys., 2010, 11(4), 70–82.

  5. Gorelik, V. S., Vdovin, A. V., and Moiseenko, V. N. Raman and hyper-Rayleigh scattering in lithium tetraborate crystals. J. Russ. Laser Res., 2003, 24, 553–605.

  6. Kuznetsov, A. Yu., Kruzhalov, A. V., Ogorodnikov, I. N., Sobolev, A. B., and Isaenko, L. I. Electronic structure of lithium tetraborate Li2B4O7 crystals. Cluster calculations and x-ray photoelectron spectroscopy. Phys. Solid State, 1999, 41, 48–50.

  7. Maslyuk, V. V., Islam, M. M., and Bredow, T. Electronic properties of compounds of the Li2O-B2O3 system. Phys. Rev. B, 2005, 72, 125101 (9 pp).

  8. Islam, M. M., Maslyuk, V. V., Bredow, T., and Minot, C. Structural and electronic properties of Li2B4O7. J. Phys. Chem. B, 2005, 109, 13597–13604.

  9. Adamiv, V. T., Burak, Ya. V., Wooten, D. J., McClory, J., Petrosky, J., Ketsman, I., Xiao, J., Losovyj, Ya. B., and Dowben, P. A. The electronic structure and secondary pyroelectric properties of lithium tetra­borate. Materials, 2010, 3, 4550–4579.

10. Wooten, D., Ketsman, I., Xiao, J., Losovyj, Ya. B., Pet­rosky, J., McClory, J., Burak, Ya. V., Adamiv, V. T., Brown, J. M., and Dowben, P. A. The electronic structure of Li2B4O7(110) and Li2B4O7(100). Eur. Phys. J. Appl. Phys., 2010, 52, 31601 (8 pp).

11. Swinney, M. W., McClory, J. W., Petrosky, J. C., Yang, Sh., Brant, A. T., Adamiv, V. T., Burak, Ya. V., Dowben, P. A., and Halliburton, L. E. Identification of electron and hole traps in lithium tetraborate (Li2B4O7) crystals: oxygen vacancies and lithium vacancies. J. Appl. Phys., 2010, 107, 113715 (9 pp).

12. Corradi, G., Watterich, A., Polgár, K., Nagirnyi, V., Hofstaetter, A., Rakitina, L. G., and Meyer, M. EPR of Cu2+ in lithium tetraborate single crystals. Phys. Status Solidi (C), 2007, 4, 1276–1279.

13. Corradi, G., Nagirnyi, V., Kotlov, A., Watterich, A., Kirm, M., Polgár, K., Hofstaetter, A., and Meyer, M. Investigation of Cu-doped Li2B4O7 single crystals by electron paramagnetic resonance and time-resolved optical spectroscopy. J. Phys. Condens. Mat., 2008, 20, 025216 (9 pp).

14. Corradi, G., Nagirnyi, V., Watterich, A., Kotlov, A., and Polgár, K. Different incorporation of Cu+ and Cu2+ in lithium tetraborate single crystals. J. Phys. Conf. Ser., 2010, 249, 012008 (6 pp).

15. Podgórska, D., Kaczmarek, S. M., Drozdowski, W., Wabia, M., Kwaśny, M., Warchoł, S., and Rizak, V. M. Charging processes of Mn ions in Li2B4O7:Mn single crystal and glass samples under the influence of γ-irradiation and annealing. Molecul. Phys. Rep., 2004, 39, 199–222.

16. Kelemen, A., Ignatovych, M., Holovey, V., Vidoczy, T., and Baranyai, P. Effect of irradiation on photo­luminescence and optical absorption spectra of Li2B4O7:Mn and Li2B4O7:Ag single crystals. Radiat. Phys. Chem., 2007, 76, 1531–1534.

17. Podgorska, D., Kaczmarek, S.M., Drozdowski, W., Ber­kowski,  M., and Worsztynowicz, A. Growth and optical properties of Li2B4O7 single crystals pure and doped with Yb, Co and Mn ions for nonlinear applications. Acta Phys. Pol. A, 2005, 107, 507–518.

18. Holovey, V. M., Popovich, K. P., Goyer, D. B., Krasy­ly­nets, V. M., and Gomonnai, A. V. Spectral dependences of thermally stimulated luminescence and X-ray luminescence of single-crystalline and glassy Li2B4O7:Mn. Radiat. Eff. Defect. Solid, 2011, 166, 522–528.

19. Danilkin, M., Jaek, I., Kerikmäe, M., Lust, A., Mändar, H., Pung, L., Ratas, A., Seeman, V., Klimonsky, S., and Kuznetsov, V. Storage mechanism and OSL-readout possibility of Li2B4O7:Mn (TLD-800). Radiat. Meas., 2010, 45, 562–565.

20. Kerikmäe, M., Danilkin, M., and Lust, A. Li2B4O7 based transparent tissue-equivalent radiation detector for thermally or optically stimulated luminescence dosi­metry and fabricating method thereof. Patent applica­tion of the University of Tartu. Priority date: 29.01.2010. Intern. Public. No. WO 2011/091803 A1. Estonian applic. No.: EE201000011, PCT applic.: PCT/EE2010/000002. Status: pending.

21. Sennova, N., Bubnova, R., Shepelev, Yu., Filatov, S., and Yakovleva, O. Li2B4O7 crystal structure in anharmonic approximation at 20, 200, 400 and 500 °C. J. Alloy. Compd., 2007, 428, 290–296.

22. Ozawa, T. C. and Kang, S. J. Balls & Sticks: easy-to-use structure visualization and animation program. J. Appl. Cryst., 2004, 37, 679.

23. Abrahams, S. C., Bernstein, J. L., Gibart, P., Robbins, M., and Sherwood, R. C. Manganese diborate: crystal structure, magnetization, and thermal extinction dependence. J. Chem. Phys., 1974, 60, 1899–1905.

24. Sadanaga, R., Nishimura, T., and Watanabe, T. The structure of jimboite, Mn3(BO3)2 and relationship with the structure of kotoite. Mineral. J., 1965, 4, 380–388.

25. Norrestam, R., Kritikos, M., and Sjödin, A. Man­ganese(II,III) oxyborate, Mn2OBO3: a distorted homometallic warwickite – synthesis, crystal structure, band calculations, and magnetic susceptibility. J. Solid State Chem., 1995, 114, 311–316.

26. Smith, D. K., Cline, C. F., and Austerman, S. B. The crystal structure ofβ-beryllia. Acta Cryst., 1965, 18, 393–397.

27. Milsch, B. and Kerbe, F. EPR of chromium and manganese ions in beryllium oxide ceramics. Phys. Status Solidi (A), 1987, 103, K141–K144.

28. Holovey, V. M., Sidey, V. I., Lyamayev, V. I., and Birov, M. M. Influence of different annealing condi­tions on the luminescent properties of Li2B4O7:Mn single crystals. J. Phys. Chem. Solids, 2007, 68, 1305–1310.

29. Biernacki, S., Kutrowski, M., Karczewski, G., Wojto­wicz, T., and Kossut, J. Temperature variation of the Mn2+ luminescence spectra in Cd1−XMnXTe crystals. Semicond. Sci. Technol., 1996, 11, 48–54.

30. Duan, C. J., Delsing, A. C. A., and Hintzen, H. T. Photo­luminescence properties of novel red-emitting Mn2+-activated MZnOS (M = Ca, Ba) phosphors. Chem. Mater., 2009, 21, 1010–1016.

31. Griscom, D. L. and Griscom, L. E. Paramagnetic resonance of Mn2+ in glasses and compounds of the lithium borate system. J. Chem. Phys., 1967, 47, 2711–2722.

32. Ramana, M. V., Kumar, K. S., Rahman, S., Babu, D. S., Sathyanarayan, S. G., and Sastry, G. S. Electron para­magnetic resonance study of Mn2+, Cu2+ and VO2+ in Li20-Na2O-B2O3 glasses. J. Mater. Sci. Lett., 1989, 8, 1471–1473.

33. Chakradhar, S. R. P., Sivaramaiah, G., Rao, L. J., and Gopal, N. O. EPR and optical investigations of manganese ions in alkali lead tetraborate glasses. Spectrochim. Acta A-M, 2005, 62, 761–768.

34. Ardelean, I., Peteanu, M., Mureşan, N., Ioncu, V., and Ciorcas-Delille, F. EPR investigation of manganese ions in 70TeO2×25B2O3×5MO (MO => SrO or SrF2) glass matrices. J. Optoelectron. Adv. M., 2005, 7, 2661–2666.

35. Chakradhar, R. P. S., Yasoda, B., Rao, J. L., and Gopal, N. O. EPR and optical studies of Mn2+ ions in Li2O–Na2O–B2O3 glasses – an evidence of mixed alkali effect. J. Non-cryst. Solids, 2007, 353, 2355–2362.

36. Padlyak, B. V., Wojtowicz, W., Adamiv, V. T., Burak, Ya. V., and Teslyuk, I. M. EPR spectroscopy of the Mn2+ and Cu2+ centres in lithium and potassium–lithium tetraborate glasses. Acta Phys. Pol. A, 2010, 117, 122–125.

37. Shkrob, I. A., Tadjikov, B. M., and Trifunac, A. D. Magnetic resonance studies on radiation-induced point defects in mixed oxide glasses. I. Spin centers in B2O3 and alkali borate glasses. J. Non-cryst. Solids, 2000, 262, 6–34.

38. Rizak, I. M., Rizak, V. M., Baisa, N. D., Bilanich, V. S., Boguslavskii, M. V., Stefanovich, S. Yu., and Golo­vei, V. M. Charge transport in Li2B4O7 in single crystal and glassy states. Crystallogr. Rep., 2003, 48, 676–681.

39. Burak, Ya. V., Padlyak, B. V., and Shevel, V. M. Neutron-induced defects in the lithium tetraborate single crystals. Radiat. Eff. Defect. S., 2002, 157, 1101–1109.

40. Lian, J. C., Finazzi, E., Di Valentin, C., Risse, T., Gao, H.-J., Pacchioni, G., and Freund, H.-J. Li atoms deposited on single crystalline MgO(0 0 1) surface. A combined experimental and theoretical study. Chem. Phys. Lett., 2008, 450, 308–311.

41. Ogorodnikov, I. N., Pustovarov, V. A., Kruzhalov, A. V., Isaenko, L. I., Kirm, M., and Zimmerer, G. Self-trapped excitons in LiB3O5 and Li2B4O7 lithium borates: time-resolved low-temperature luminescence VUV spectroscopy. Phys. Solid State, 2000, 42, 464–472.

42. Deskins, N. A. and Dupuis, M. Intrinsic hole migration rates in TiO2 from density functional theory. J. Phys. Chem. C, 2009, 113, 346–358.

43. Jain, H., Issa, A., Anavekar, R. V., Böhmer, R., Kanert, O., and Küchler, R. Ionic-to-electronic con­ductivity transition in an oxide glass doped with gold. Appl. Phys. Lett., 2009, 95, 142908 (3 pp).

44. Khalil, M. M. I. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide. Appl. Phys. A-Mater., 2007, 86, 505–514.

45. Ogorodnikov, I. N., Poryvay, N. E., and Pustovarov, V. A. Radiation effects and defects in lithium borate crystals. IOP Conf. Ser.: MSE, 2010, 15, 012016 (8 pp).

46. Danilkin, M., Lust, A., Ratas, A., Seeman, V., and Kerik­mäe, M. Afterglow kinetics and storage mechanism in CaF2:Mn (TLD-400).

Back to Issue