ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Atmospheric chamber study of oil shale fly ash particles from circulating fluidized bed and pulverized firing processes; pp. 314–319

Full article in PDF format | doi: 10.3176/proc.2012.4.06

Authors
Gary Urb, Erik Teinemaa, Richard M. Kamens, Uuve Kirso, Toomas Tenno

Abstract

Oil shale combustion fly ash collected to electric precipitators from pulverized firing (PF) and circulating fluidized bed combustion (CFB) processes was investigated in atmospheric chamber experiments. The aim of the work was to detect differences in the atmospheric behaviour of the fine particles from CFB and PF boilers of the Estonian Power Plant (PP), located close to Narva, Estonia. One series of experiments was performed in a dual outdoor Teflon film smog chamber (270 m3) at the University of North Carolina at Chapel Hill (USA) under normal weather conditions (temperature, humidity, sunlight). Parallel tests were carried out in an outdoor smog chamber (108 m3) at Tuulna, Harju County, Estonia, where the experiment was made under meteorological conditions similar to those at the location of the PP. The size distribution and number concentration of particles in the chamber were monitored during the experiment. The fractional distribution results demonstrate that the CFB aerosol in the chamber air had more fine particles than the PF aerosol. Approximately 2 h after injection the fly ash particles larger than 4 µm had settled out from both samples. The initial fly ash aerosol had a trimodal fractional distribution. Both PF and CFB fly ash formed stable aerosols 1–3 μm in diameter during the 6 h experiment and are therefore prone to long-range transport.


References

 

  1. Narva Power Plants, https://www.energia.ee/en/power/ oilshale/start (visited 20-05-2011).

  2. Savest, N., Oja, V., Kaevand, T., and Lille, Ü. Interaction of Estonian kukersite with organic solvents: a volu­metric swelling and molecular simulation study. Fuel, 2007, 86, 17–21.
http://dx.doi.org/10.1016/j.fuel.2006.06.016

  3. Bauert, H. and Kattai, V. Kukersite oil shale. In Geology and Mineral Resources of Estonia (Raukas, A. and Teedumäe, A., eds). Estonian Academy Publishers, Tallinn, 1997, 313–326.

  4. Bityukova, L., Mõtlep, R., and Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva thermal power plants, Estonia. Oil Shale, 2010, 27, 339–353.
http://dx.doi.org/10.3176/oil.2010.4.07

  5. Ots, A. Oil Shale Fuel Combustion. Tallinna Raamatu­trüki­koda, Tallinn, 2006.

  6. Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loo­saar, J., Parve, T., Pihu, T., Prikk, A., and Tiikma, T. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale, 2005, 22(4S), 381–397.

  7. Teinemaa, E. The environmental fate of the particulate matter and organic pollutants from an oil shale power plant. PhD Thesis, University of Tartu, 2003.

  8. Teinemaa, E., Kirso, U., Strommen, M. R., and Kamens, R. M. Deposition flux and atmospheric behavior of oil shale combustion aerosols. Oil Shale, 2003, 20(3S), 429–440.

  9. Teinemaa, E., Kirso, U., Strommen, M. R., and Kamens, R. M. Atmospheric behavior of oil shale combustion fly ash in a chamber study. Atmos. Environ., 2002, 36(5), 813–814.
http://dx.doi.org/10.1016/S1352-2310(01)00520-9

10. Kirso, U., Laja, M., and Urb, G. Polycyclic aromatic hydrocarbons (PAH) in ash fractions of oil shale combustion: fluidized bed vers pulverized firing. Oil Shale, 2005, 22(4S), 537–545.

11. Laja, M., Urb, G., Irha, N., Reinik, J., and Kirso, U. Leaching behavior of ash fractions from oil shale combustion by fluidized bed and pulverized firing processes. Oil Shale, 2005, 22, 453–465.

12. Luan, J., Li, A., Su, T., and Li, X. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China. J. Hazard. Mater., 2009, 166, 1109–1114.
http://dx.doi.org/10.1016/j.jhazmat.2008.12.023

13. Realo, E., Realo, K., and Jõgi, J. Releases of natural radionuclides from oil-shale-fired power plants in Estonia. J. Environ Radioactiv., 1996, 33(1), 77–89.
http://dx.doi.org/10.1016/0265-931X(95)00088-R

14. Jalkanen, L., Mäkinen, A., Häsänen, E., and Juhanoja, J. The effect of large anthropogenic particulate emissions on atmospheric aerosols, deposition and bioindicators in the eastern Gulf of Finland region. Sci. Total Environ., 2000, 262, 123–136.
http://dx.doi.org/10.1016/S0048-9697(00)00602-1

15. Querol, X., Alastuey, A., Lopez-Soler, A., Plana, F., Mantilla, E., Juan, R., Ruiz, C. R., and La Orden, A. Characterisation of atmospheric particulates around a coal-fired power station. Int. J. Coal Geol., 1999, 40(2–3), 175–188.
http://dx.doi.org/10.1016/S0166-5162(98)00067-6

16. Plamus, K., Soosaar, S., Ots, A., and Neshumayev, D. Firing Estonian oil shale of higher quality CFB boilers – environmental and economic impact. Oil Shale, 2011, 28(1S), 113–126.
http://dx.doi.org/10.3176/oil.2011.1S.04

17. Rattanavaraha, W., Rosen, E., Zhang, H., Li, Q., Patong, K., and Kamens, R. M. The reactive oxidant potential of different types of aged atmospheric particles: an outdoor chamber study. Atmos. Environ., 2011, 23, 3848–3855.
http://dx.doi.org/10.1016/j.atmosenv.2011.04.002

18. Lee, S., Jang, M., & Kamens, R. M. SOA formation from the photooxidation of [alpha]-pinene in the presence of freshly emitted diesel soot exhaust. Atmos. Environ., 2004, 38(16), 2597–2605.
http://dx.doi.org/10.1016/j.atmosenv.2003.12.041

19. Beyer, A., Mackay, D., Matthies, M., Wania, F., and Webster, E. Assessing long-range transport potential of persistent organic pollutants. Environ. Sci. Technol., 2000, 34, 699–703.
http://dx.doi.org/10.1021/es990207w

20. Orru, H., Teinemaa, E., Lai, T., Tamm, T., Kaasik, M., Kimmel, V., Kangur, K., Merisalu, E., and Fors­berg, B. Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modelling techniques. Environmental Health, 2009, 8, 7.
http://dx.doi.org/10.1186/1476-069X-8-7

21. Orru, H., Maasikmets, M., Lai, T., Tamm, T., Kaasik, M., Kimmel, V., Orru, K., Merisalu, E., and Forsberg, B. Health impacts of particulate matter in five major Estonian towns: main sources of exposure and local differences. Air Quality, Atmosphere & Health, 2011, 4(3–4), 247–258.
http://dx.doi.org/10.1007/s11869-010-0075-6

22. Siegmann, K., Scherrer, L., and Siegmann, H. C. Physical and chemical properties of airborne nanoscale particles and how to measure the impact on human health. J. Mol. Struct. Theochem., 1998, 458(1–2), 191–201.
http://dx.doi.org/10.1016/S0166-1280(98)00361-3

23. Linak, W. P., Yoo, J. I., Wasson, S. J., Zhu, W., Wendt, J. O., Huggins, F. E., Chen, Y., Shah, N., Huffman, G. P., and Gilmour, M. I. Ultrafine ash aerosols from coal combustion: characterization and health effects. P. Combust. Inst., 2007, 31(2), 1929–1937.
http://dx.doi.org/10.1016/j.proci.2006.08.086

 


Back to Issue