eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Generalization of connection based on the concept of graded q-differential algebra; pp. 256–264

Full article in PDF format | doi: 10.3176/proc.2010.4.02

Viktor Abramov, Olga Liivapuu

We propose a generalization of the concept of connection form by means of a graded q-differential algebra Ωq, where q is a primitive Nth root of unity, and develop the concept of curvature N-form for this generalization of the connection form. The Bianchi identity for a curvature N-form is proved. We study an Ωq-connection on module and prove that every projective module admits an Ωq-connection. If the module is equipped with a Hermitian structure, we introduce a notion of an Ωq-connection consistent with the Hermitian structure.


  1. Abramov, V. On a graded q-differential algebra. J. Nonlinear Math. Phys., 2006, 13 Supplement, 1–8.

  2. Abramov, V. Generalization of superconnection in noncommutative geometry. Proc. Estonian Acad. Sci. Phys. Math., 2006, 55, 3–15.

  3. Abramov, V. Graded q-differential algebra approach to q-connection. In Generalized Lie Theory in Mathematics, Physics and Beyond (Silvestrov, S. and Paal, E., eds). Springer, 2009, 71–79.

  4. Abramov, V. and Liivapuu, O. Geometric approach to BRST-symmetry and ZN-generalization of superconnection. J. Nonlinear Math. Phys., 2006, 13 Supplement, 9–20.

  5. Connes, A. C* algèbres et géométrie différentielle. C. R. Acad. Sci. Paris, 1980, 290, Série A, 599–604.

  6. Cuntz, J. and Quillen, D. Algebra extensions and nonsingularity. J. Amer. Math. Soc., 1995, 8, 251–289.

  7. Dubois-Violette, M. dN = 0: generalized homology. K-Theory, 1998, 14, 371–404.

  8. Dubois-Violette, M. Lectures on differentials, generalized differentials and on some examples related to theoretical physics. arXiv: math.QA/0005256, 2000.

  9. Dubois-Violette, M. Lectures on graded differential algebras and noncommutative geometry. In Noncommutative Differential Geometry and Its Applications to Physics: Proceedings of the Workshop (Maeda, Y., Moriyoshi, H., Omori, H., Sternheimer, D., Tate, T., and Watamura, S., eds). Math. Phys. Stud., 2001, 23, 245–306.

10. Dubois-Violette, M. and Kerner, R. Universal q-differential calculus and q-analog of homological algebra. Acta Math. Univ. Comenian, 1996, 65, 175–188.

11. Dubois-Violette, M. and Masson, T. On the first order operators in bimodules. Lett. Math. Phys., 1996, 37, 467–474.

12. Mathai, V. and Quillen, D. Superconnections, Thom classes and equivariant differential forms. Topology, 1986, 25, 85–110.

13. Quillen, D. G. Chern-Simons forms and cyclic cohomology. In The Interface of Mathematics and Particle Physics (Quillen, D. G., Tsou, S. T., and Segal, G. B., eds). Clarendon Press, Oxford, 1990, 117–134.
Back to Issue