eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Remarks on (super-)accelerating cosmological models in general scalar–tensor gravity; pp. 306–312

Full article in PDF format | doi: 10.3176/proc.2010.4.09

Laur Järv, Piret Kuusk, Margus Saal

We consider Friedmann–Lemaître–Robertson–Walker cosmological models in the framework of general scalar–tensor theories of gravity (STG) with arbitrary coupling functions, set in the Jordan frame. First we describe the general properties of the phase space in the case of barotropic matter fluid and scalar field potential for any spatial curvature (flat, spherical, hyperbolic). Then we address the question under which conditions epochs of accelerated and super-accelerated expansion are possible in STG. For flat models filled with dust matter (and vanishing potential) we give a necessary condition on the coupling function of the scalar field which must be satisfied to allow acceleration and super-acceleration. This is illustrated by a specific example.

  1. Sahni, V. and Starobinsky, A. Reconstructing dark energy. Int. J. Mod. Phys. D, 2006, 15, 2105–2132.

  2. Alam, U., Sahni, V., and Starobinsky, A. A. Exploring the properties of dark energy using type Ia supernovae and other datasets. JCAP, 2007, 0702, 011.

  3. Nesseris, S. and Perivolaropoulos, L. Crossing the phantom divide: theoretical implications and observational status. JCAP, 2007, 0701, 018.

  4. Wu, P. and Yu, H. W. Probing the cosmic acceleration history and the properties of dark energy from the ESSENCE supernova data with a model independent method. JCAP, 2008, 0802, 019.

  5. Perivolaropoulos, L. and Shafieloo, A. Bright high z SnIa: a challenge for LCDM? arXiv:0811.2802 [astro-ph].

  6. Caldwell, R. R. A phantom menace? Phys. Lett. B, 2002, 545, 23–29.

  7. Vikman, A. Can dark energy evolve to the phantom? Phys. Rev. D, 2005, 71, 023515.

  8. Caldwell, R. R. and Doran, M. Dark-energy evolution across the cosmological-constant boundary. Phys. Rev. D, 2005, 72, 043527.

  9. Amendola, L. and Tsujikawa, S. Phantom crossing, equation-of-state singularities, and local gravity constraints in f(R) models. Phys. Lett. B, 2008, 660, 125–132.

10. Bamba, K., Geng, C. Q., Nojiri, S., and Odintsov, S. D. Crossing of the phantom divide in modified gravity. arXiv:0810.4296 [hep-th].

11. Faraoni, V. Superquintessence. Int. J. Mod. Phys. D, 2002, 11, 471–482.

12. Elizalde, E., Nojiri, S., and Odintsov, S. D. Late-time cosmology in (phantom) scalar–tensor theory: dark energy and the cosmic speed-up. Phys. Rev. D, 2004, 70, 043539.

13. Perivolaropoulos, L. Crossing the phantom divide barrier with scalar tensor theories. JCAP, 2005, 0510, 001.

14. Demianski, M., Piedipalumbo, E., Rubano, C., and Tortora, C. Accelerating universe in scalar tensor models: confrontation of theoretical predictions with observations. Astron. Astrophys., 2006, 454, 55–66.

15. Gannouji, R., Polarski, D., Ranquet, A., and Starobinsky, A. A. Scalar–tensor models of normal and phantom dark energy. JCAP, 2006, 0609, 016.

16. Tsujikawa, S., Uddin, K., Mizuno, S., Tavakol, R., and Yokoyama, J. Constraints on scalar–tensor models of dark energy from observational and local gravity tests. Phys. Rev. D, 2008, 77, 103009.

17. Billyard, A., Coley, A., and Ibáñez, J. On the asymptotic behaviour of cosmological models in scalar–tensor theories of gravity. Phys. Rev. D, 1998, 59, 023507.

18. Gunzig, E., Faraoni, V., Figueiredo, A., Rocha, T. M., and Brenig, L. The dynamical system approach to scalar field cosmology. Class. Quant. Grav., 2000, 17, 1783–1814.

19. Gunzig, E., Saa, A., Brenig, L., Faraoni, V., Rocha Filho, T. M., and Figueiredo, A. Superinflation, quintessence, and nonsingular cosmologies. Phys. Rev. D, 2001, 63, 067301.

20. Carvalho, F. C. and Saa, A. Non-minimal coupling, exponential potentials and the w < –1 regime of dark energy. Phys. Rev. D, 2004, 70, 087302.

21. Järv, L., Kuusk, P., and Saal, M. The dynamics of scalar–tensor cosmology from RS two-brane model. Phys. Rev. D, 2007, 75, 023505.

22. Järv, L., Kuusk, P., and Saal, M. Scalar–tensor cosmology at the general relativity limit: Jordan vs Einstein frame. Phys. Rev. D, 2007, 76, 103506.

23. Hrycyna, O. and Szydlowski, M. Extended quintessence with non-minimally coupled phantom scalar field. Phys. Rev. D, 2007, 76, 123510.

24. Faraoni, V. Phase space geometry in scalar–tensor cosmology. Ann. Phys. (N.Y.), 2005, 317, 366–382.

25. Järv, L., Kuusk, P., and Saal, M. Scalar–tensor cosmologies: fixed points of the Jordan frame scalar field. Phys. Rev. D, 2008, 78, 083530.

26. Faraoni, V., Jensen, M. N., and Theuerkauf, S. A. Non-chaotic dynamics in general-relativistic and scalar–tensor cosmology. Class. Quant. Grav., 2006, 23, 4215–4230.

27. Esposito-Farese, G. and Polarski, D. Scalar–tensor gravity in an accelerating universe. Phys. Rev. D, 2001, 63, 063504.
Back to Issue