ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Finding a class of 2-groups; pp. 370–374

Full article in PDF format | doi: 10.3176/proc.2010.4.17

Author
Tatjana Tamberg

Abstract
Let n ³ ≥3 be an integer and Cm denote a cyclic group of order m. All groups which can be presented as a semidirect products (C2n x C2n) ⋋C4 are described. These groups are given by generators and defining relations.
References

  1. Coxeter, H. S. M. and Moser, W. O. J. Generators and Relations for Discrete Groups. Springer-Verlag, 1972.

2. Gramushnjak, T. A characterization of a class of 2-groups by their defining relations. J. Gen. Lie Theory Appl., 2008, 2, 157–161.
doi:10.4303/jglta/S070312

3. Gramushnjak, T. and Puusemp, P. A characterization of a class of groups of order 32 by their endomorphism semigroups. Algebras Groups Geom., 2005, 22, 387–412.

4. Gramushnjak, T. and Puusemp, P. Description of a class of 2-Groups. J. Nonlinear Math. Phys., 2006, 13, 55–65.
doi:10.2991/jnmp.2006.13.s.7

5. Gramushnjak, T. and Puusemp, P. A characterization of a class of 2-groups by their endomorphism semigroups. Ch. 14 In Generalized Lie Theory in Mathematics, Physics and Beyond (Silvestrov, S. et al., eds). Springer-Verlag, Berlin, 2009, 151–159.
doi:10.1007/978-3-540-85332-9_14

6. Hall, M., Jr. and Senior, J. K. The Groups of Order 2n, n £ 6. Macmillan, New York; Collier-Macmillan, London, 1964.

7. Puusemp, P. Non-abelian groups of order 16 and their endomorphism semigroups. J. Math. Sci., 2005, 131, 6098–6111.
doi:10.1007/s10958-005-0463-x

8. Puusemp, P. Groups of order less than 32 and their endomorphism semigroups. J. Nonlinear Math. Phys., 2006, 13, Supplement, 93–101.
doi:10.2991/jnmp.2006.13.s.11

9. Puusemp, P. Groups of order 24 and their endomorphism semigroups. J. Math. Sci., 2007, 144, 3980–3992.
doi:10.1007/s10958-007-0251-x
Back to Issue