eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

On modelling wave motion in microstructured solids; pp. 241–246

Full article in PDF format | doi: 10.3176/proc.2009.4.05

Merle Randrüüt, Andrus Salupere, Jüri Engelbrecht


The Mindlin-type model is used for describing the longitudinal deformation waves in microstructured solids. The evolution equation (one-wave equation) is derived for the hierarchical governing equation (two-wave equation) in the nonlinear case using the asymptotic (reductive perturbation) method. The evolution equation is integrated numerically under harmonic as well as localized initial conditions making use of the pseudospectral method. Analysis of the results demonstrates that the derived evolution equation is able to grasp essential effects of microinertia and elasticity of a microstructure. The influence of these effects can result in the emergence of asymmetric solitary waves.


  1. Engelbrecht, J. and Pastrone, F. Waves in microstructured solids with strong nonlinearities in microscale. Proc. Estonian Acad. Sci. Phys. Math., 2003, 52, 12–20.

  2. Engelbrecht, J., Berezovski, A., Pastrone, F., and Braun, M. Waves in microstructured materials and dispersion. Phil. Mag., 2005, 85, 4127–4141.

  3. Engelbrecht, J., Pastrone, F., Braun, M., and Berezovski, A. Hierarchies of waves in nonclassical materials. In The Universality of Nonclassical Nonlinearity: Applications to Non-Destructive Evaluations and Ultrasonics (Delsanto, P. P., ed.). Springer, Berlin, 2006, 29–48.

  4. Eringen, A. Microcontinuum Field Theories. I Foundations and Solids. Springer, New York, 1999.

  5. Fornberg, B. Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge, 1998.

  6. Gates, T. S., Odegard, G. M., Frankland, S. J. V., and Clancy, T. C. Computational materials: multiscale modeling and simulation of nanostructured materials. Compos. Sci. Technol., 2005, 65, 2416–2434.

  7. Giovine, P. and Oliveri, F. Dynamics and wave propagation in dilatant granular materials. Meccanica, 1995, 30, 341–357.

  8. Janno, J. and Engelbrecht, J. An inverse solitary wave problem related to microstructured materials. Inverse Probl., 2005, 21, 2019–2034.

  9. Janno, J. and Engelbrecht, J. Solitary waves in nonlinear microstructured materials. J. Phys. A: Math. Gen., 2005, 38, 5159–5172.

10. Janno, J. and Engelbrecht, J. Waves in microstructured solids: inverse problems. Wave Motion, 2005, 43, 1–11.

11. Maugin, G. Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford, 1999.

12. Mindlin, R. D. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal., 1964, 16, 51–78.

13. Newell, A. C. Solitons in Mathematics and Physics. Society for Industrial and Applied Mathematics, Philadelphia, 1985.

14. Randrüüt, M. and Braun, M. On one-dimensional solitary waves in microstructured solids. Wave Motion (submitted).

15. Salupere, A., Engelbrecht, J., and Peterson, P. Long-time behaviour of soliton ensembles. Part I – Emergence of ensembles. Chaos Solitons Fractals, 2002, 14, 1413–1424.

16. Salupere, A., Engelbrecht, J., and Peterson, P. Long-time behaviour of soliton ensembles. Part II – Periodical patterns of trajectories. Chaos Solitons Fractals, 2003, 15, 29–40.

17. Salupere, A., Tamm, K., and Engelbrecht, J. Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int. J. Non-Linear Mech., 2008, 43, 201–208.

18. Salupere, A., Tamm, K., Engelbrecht, J., and Peterson, P. On the interaction of deformation waves in microstructured solids. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56, 93–99.

19. Sun, C. T., Achenbach, J. D., and Herrmann, G. Continuum theory for a laminated medium. J. Appl. Mech. Trans. ASME, 1968, 35(3), 467–475.

20. Taniuti, T. and Nishihara, K. Nonlinear Waves. Pitman, Boston, 1983.

21. Whitham, G. Linear and Nonlinear Waves. John Wiley & Sons, New York, 1974.

Back to Issue