eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Molecular scale organized polyconjugated polymer–heteropolyacid composites; pp. 12–17

Full article in PDF format | doi: 10.3176/proc.2009.1.02

Anatoly Kulak, Alexander Kokorin, Tamara Kulak, Dieter Meissner


Hybrid organic–inorganic molecular-organized materials based on a conductive polymer – poly[2-metoxy-5-(3',7'-dimethyloctyloxy)-p-phenylenevinylene] (MDMO-PPV) – doped with Keggin-type heteropolyacids (polyoxometalates) were synthesized. It is shown that the rate of chemical interaction between MDMO-PPV and heteropolyacids correlates with the oxidative activity and acidity of the latter and leads to the formation of tertiary structures due to a strong electrostatic interaction of each 4–6 monomer units of the polymer with the heteropolyacid anion cluster. This interaction manifests itself in the appearance of an intensive EPR signal characteristic of the unpaired electron localized in the conjugated polymer matrix as well as in the changes in optical, photoelectrochemical, and photoluminescence properties of the composite films.


  1. Günes, S., Neugebauer, H., and Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev., 2007, 107, 1324–1338.

  2. Günes, S. and Sariciftci, N. S. Hybrid solar cells. Inorg. Chem. Acta, 2008, 361, 581–588.

  3. Kulak, A. I., Kokorin, A. I., Kulak, T. I., Poznyak, S. K., Meissner, D., Pergushev, V. I., and Sariciftci, N. S. Molecular scale organized poly(MDMO-p-phenylene vinylene)–heteropolyacids composites. Synth. Met., 2006, 156, 843–847.

  4. Kulak, A. I. Electrochemistry of Semiconductor Hetero­structures. Universitetskoe, Minsk, 1986 (in Russian).

  5. Gomez-Romero, P. Hybrid organic–inorganic materials. In search of synergic activity. Adv. Mater., 2001, 13, 163–174.

  6. Arici, E., Sariciftci, N. S., and Meissner, D. Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater., 2003, 13, 165–171.

  7. Günes, S., Fritz, K. P., Neugebauer, H., Sariciftci, N. S., Kumar, S., and Scholes, G. D. Hybrid solar cells using PbS nanoparticles. Sol. Energy Mater. Sol. Cells, 2007, 91, 420–423.

  8. Van Hal, P. A., Wienk, M. M., Kroon, J. M., Verhees, W. J. H., Stooff, L. H., van Gennip, W. J. H., Jonkheijm, P., and Janssen, R. A. J. Photoinduced electron transfer and photovoltaic response of a MDMO-PPV : TiO2 bulk-heterojunction. Adv. Mater., 2003, 15, 118–121.

  9. Kulak, A. I., Poznyak, S. K., Kokorin, A. I., and Kulak, T. I. Molecular-organized composite materials based on polyconjugated polymers and polyoxometalates. Sviridov Readings, Iss. 2. Minsk, 2005, 16–21 (in Russian).

10. Hiskia, A., Mylonas, A., and Papaconstantinou, E. Comparison of the photoredox properties of polyoxometalates and semiconducting particles. Chem. Soc. Rev., 2001, 30, 62–69.

11. Sadakane, M. and Steckhan, E. Electrochemical properties of polyoxometalates as electrocatalysts. Chem. Rev., 1998, 98, 219–237.

12. Otake, M., Komiyama, Y., and Otaki, T. Electron spin resonance studies of the reduced molybdovanado­phosphoric heteropoly acids. J. Phys. Chem., 1973, 77, 2896–2903.

Back to Issue