eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Polycrystalline CuIn3Se5 thin film photoabsorber deposited by the pulsed laser deposition technique; pp. 24–28

Full article in PDF format | doi: 10.3176/proc.2009.1.04

Andrey Tverjanovich, Sergei Bereznev, Evgeny N. Borisov, Dongsoo Kim, Julia Kois, Kristjan Laes, Olga Volobujeva, Andres Öpik, Enn Mellikov, Yuri S. Tveryanovich

Polycrystalline CuIn3Se5 photoabsorber thin films were deposited onto glass/ITO substrates by using the pulsed laser deposition (PLD) technique. Stoichiometric CuIn3Se5 samples for PLD targets were synthesized in evacuated quartz ampoules by the vacuum melting of pure elements. The synthesized samples and deposited films were tested by using XRD analysis. The conditions of the PLD process were developed for the preparation of polycrystalline CuIn3Se5 thin films of the same composition as a source target and with the thickness in the range 300–450 nm. The influence of thermal annealing on photovoltaic properties and morphology of as-deposited CuIn3Se5 layers was investigated.

  1. Ariswan, G. E. H. M., Abdelali, M., Guastavino, F., and Llinares, C. Structural, optical and electrical properties of the ordered vacancy compound CuIn3Se5 thin films fabricated by flash evaporation. Solid State Commun., 2002, 124, 391–396.

  2. Wang, H. P., Shih, I., and Champness, C. H. Studies on monocrystalline CuInSe2 and CuIn3Se5. Thin Solid Films, 2000, 494, 361–362.

  3. Malar, P. and Kasiviswanathan, S. Characterization of stepwise flash evaporated CuIn3Se5 films. Sol. Energ. Mat. Sol. C., 2005, 85, 521–533.

  4. Malar, P. and Kasiviswanathan, S. A comparative study of CuInSe2 and CuIn3Se5 films using transmission electron microscopy, optical absorption and Ruther­ford backscattering spectrometry. Sol. Energ. Mat. Sol. C., 2005, 88, 281–292.

  5. Bodnar, I. V., Gremenok, V. F., Nikolaev, Yu. A., Rud, V. Yu., Rud, Yu. V., and Terukov, E. I. Photo­sensitivity of thin-film structures based on CuIn3Se5 and CuIn5Se8 ternary semiconductor compounds. Tech. Phys. Lett., 2007, 33(2), 111–113.

  6. Bereznev, S., Kois, J., Golovtsov, I., Öpik, A., and Melli­kov, E. Electrodeposited (Cu–In–Se)/polypyrrole PV structures. Thin Solid Films, 2006, 511–512, 425–429.

  7. Bereznev, S., Koeppe, R., Konovalov, I., Kois, J., Günes, S., Öpik, A., Mellikov, E., and Sariciftci, N. S. Hybrid solar cells based on CuInS2 and organic buffer–sensitizer layers. Thin Solid Films, 2007, 515, 5759–5762.

  8. Tverjanovich, A., Borisov, E. N, Vasilieva, E. S., Tolochko, O. V., Vahhi, I. E., Bereznev, S., and Tveryanovich, Yu. S. CuInSe2 thin films deposited by UV laser ablation. Sol. Energ. Mat. Sol. C., 2006, 90, 3624–3632.

  9. Wang, H. P., Shih, I., and Champness, C. H. Studies on monocrystalline CuInSe2 and CuIn3Se5. Thin Solid Films, 2000, 361–362, 494–497.

10. Boehnke, U. C. and Kuhn, G. Phase relations in the ternary system Cu–In–Se. J. Mater. Sci., 1987, 22, 1635–1641.

11. Buzea, C. and Robbie, K. Nano-sculptured thin film thick­ness variation with incidence angle. J. Optoelectron. Adv. Mater., 2004, 6, 1263–1268.

12. Birks, L. S. and Friedman, H. Particle size determination from X-ray line broadening. J. Appl. Phys., 1946, 16, 687–692.

13. Mott, N. F. and Davis, E. A. Electron Processes in Non-Crystalline Materials. Clarendon Press, Oxford, 1979.

Back to Issue