ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Preparation of nanostructured carbon materials; pp. 48–53

Full article in PDF format | doi: 10.3176/proc.2008.1.05

Authors
Fernando Pérez-Caballero, Anna-Liisa Peikolainen, Mihkel Koel

Abstract
The low-density organic aerogels formed by the supercritical carbon dioxide drying of 5-methylresorcinol–formaldehyde gels are a good source material for the preparation of low-density carbon aerogels with a homogeneous structure. In our research the supercritical drying process was optimized so that the resulting aerogels would not significantly shrink during the process. The density of the resulting 5-methylresorcinol–formaldehyde organic aerogel was as low as 0.1 g/cm3, its specific surface area being more than 350 m2/g. Also, the pyrolysis of the organic aerogel to get carbon material with a proper structure was optimized in relation to the low rate of the evolution of pyrolysis products during the process. The carbon material obtained had a uniform structure, consisting of sparsely packed particles with a narrow size distribution. The density of carbon aerogels obtained was 0.2 g/cm3, their specific surface area being over 700 m2/g; the shrinkage was up to 30%. It was also found that the porosity of carbon aerogels could be varied by changing the conditions of synthesis. The aerogels obtained were examined using scanning electron microscopy, infrared spectroscopy, and nitrogen adsorption–desorption analysis.
References

  1. FrickeJ. & TillotsonT. Aerogels: production, characterization, and applications. Thin Solid Films, 1997, 297, 212–223.
doi:10.1016/S0040-6090(96)09441-2

  2. Pekala, R. W. Low density, resorcinol-formaldehyde aero­gels. United States Patent 4873218, 1989.

  3. Pérez-Caballero, F., Peikolainen, A.-L., Uibu, M., Kuu­sik, R., Volobujeva, O. & Koel, M. Preparation of carbon aerogels from 5-methylresorcinol–formal­dehyde gels. Micropor. Mesopor. Mater., 2008, 108, 230–236.

  4. HanzawaY. & KanekoK. Activated carbon aerogels. Langmuir, 1996, 12, 6167–6169.
doi:10.1021/la960481t

  5. Liu, C., Li, L., Song, H. & Chen, X. Facile synthesis of ordered mesoporous carbons from F108/resorcinol–formaldehyde composites obtained in basic media. Chem. Commun., 2007, 757–759.
doi:10.1039/b614199d

  6. PekalaRW. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci., 1989, 24,3221–3227.
doi:10.1007/BF01139044

  7. TamonH., IshizakaH., ArakiT. & OkazakiM. Control of mesoporous structure of organic and carbon aerogels. Carbon, 1998, 36, 1257–1262.
doi:10.1016/S0008-6223(97)00202-9

  8. TamonH., IshizakaH., MikamiM. & OkazakiM. Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon, 1997, 35, 791–796.
doi:10.1016/S0008-6223(97)00024-9

  9. Kim, S. Y., Yeo, D. H., Lim, J. W., Yoo, K. P., Lee, K. H. & Kim, H.Synthesis and characterization of resorcinol–formaldehyde organic aerogel. J. Chem. Eng. Japan, 2001, 34, 216–220.
doi:10.1252/jcej.34.216

10. Berthon-FabryS., LangohrD., AchardP., CharrierD., DjuradoD. & Ehrburger-DolleF. Anisotropic high-surface-area carbon aerogels. J. Non-Cryst. Solids,2004, 350, 136–144.
doi:10.1016/j.jnoncrysol.2004.06.040

11. BarralK. Low-density organic aerogels by double-catalysed synthesis. J. Non-Cryst. Solids, 1998, 225, 46–50.
doi:10.1016/S0022-3093(98)00007-6

12. Tamon, H. Carbon aerogels. In Encyclopedia of Materials: Science and Technology, 2001, 898–900.

13. Grenier-LoustalotM. F., LarroqueS., GrandeD., GrenierP. & BedelD. Phenolic resins: 2. Influence of catalyst type on reaction mechanisms and kinetics. Polymer, 1996, 37, 1363–1369.
doi:10.1016/0032-3861(96)81133-5

14. HorikawaT., HayashiJ. & MuroyamaK. Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon, 2004, 42, 1625–1633.
doi:10.1016/j.carbon.2004.02.016

15. Baumann, T. F. & SatcherJ. H. Jr. Template-directed synthesis of periodic macroporous organic and carbon aerogels. J. Non-Cryst. Solids, 2004, 350, 120–125.
doi:10.1016/j.jnoncrysol.2004.05.018

16. Li, WC., Lu, AH. & Guo, SC. Control of mesoporous structure of aerogels derived from cresol–formalde­hyde. J. Colloid Interface Sci.,2002, 254, 153–157.
doi:10.1006/jcis.2002.8573

17. PeikolainenA.-L., Pérez-Caballero, F. & KoelM. Low-density organic aerogels from oil shale by-product 5-methylresorcinol. Oil Shale, in press.

18. MandelF. S. & Don WangJ. Manufacturing of specialty materials in supercritical fluid carbon dioxide. Inorg. Chim. Acta, 1999, 294, 214–223.
doi:10.1016/S0020-1693(99)00211-X

19. Moreno-Castilla, C. & Moldano-Hódar, F. J. Carbon aero­gels for catalysis applications: An overview. Carbon, 2005, 43, 455–465.
doi:10.1016/j.carbon.2004.10.022
Back to Issue