eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Buckling analysis of angle-ply multilayered and sandwich plates using the enhanced Refined Zigzag Theory; pp. 84–102
PDF | 10.3176/proc.2022.1.08

Matteo Sorrenti, Marco Gherlone, Marco Di Sciuva

The recent enhancement of the standard Refined Zigzag Theory (RZT), herein named the enhanced Refined Zigzag Theory (en-RZT), has extended the range of applicability of the RZT to angle-ply multilayered and sandwich plates. The aim of the present investigation is to assess the numerical performances of the en-RZT for the buckling analysis of angle-ply multilayered and sandwich rectangular plates under in-plane normal loads. The linearized stability equations are obtained using the Ritz method in conjunction with the principle of virtual work, by means of Gram–Schmidt orthogonal polynomials. In order to assess the accuracy of the en-RZT, buckling loads of angle-ply laminated and sandwich plates are evaluated and compared with the numerical results available in open literature. The numerical investigation highlights the high accuracy of the en-RZT in predicting buckling loads. The study contains a parametric analysis aimed to investigate the influence of various design parameters, such as plate aspect ratio, thickness, lamina orientations, in-plane load combinations and boundary conditions on the buckling loads.


1. Pagano, N. J. Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater., 1969, 3(3), 398–411.

2. Pagano, N. J. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater., 1970, 4(1), 20–34.

3. Srinivas, S. and Rao, A. K. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struct., 1970, 6(11), 1463–1481.

4. Srinivas, S. and Rao, A. K. A three-dimensional solution for plates and laminates. J. Franklin Inst., 1971, 291(6), 469–481.

5. Noor, A. K. Stability of multilayered composite plates. Fibre Sci. Technol., 1975, 8(2), 81–89.

6. Noor, A. K. and Burton, W. S. Three-dimensional solutions for antisymmetrically laminated anisotropic plates. J. Appl. Mech., 1990, 57(1), 182–188.

7. Noor, A. K. and Burton, W. S. Assessment of computational models for multilayered anisotropic plates. Compos. Struct., 1990, 14(3), 233–265.

8. Savoia, M. and Reddy, J. N. A variational approach to three-dimensional elasticity solutions of laminated composite plates. J. Appl. Mech., 1992, 59(2S), S166–S175.

9. Abrate, S. and Di Sciuva, M. Equivalent single layer theories for composite and sandwich structures: A review. Compos. Struct., 2017, 179, 482–494.

10. Abrate, S. and Di Sciuva, M. Multilayer models for composite and sandwich structures. In Comprehensive Composite Materials II (Beaumont, P. W. R. and Zweben, C. H., eds). Elsevier, 2018, 399–425.

11. Jones, R. M., Morgan, H. S. and Whitney, J. M. Buckling and vibration of antisymmetrically laminated angle-ply rectangular plates. J. Appl. Mech., 1973, 40(4), 1143–1144.

12. Sharma, S., Iyengar, N. G. R. and Murthy, P. N. Buckling of antisymmetric cross- and angle-ply laminated plates. Int. J. Mech. Sci., 1980, 22(10), 607–620.

13. Khdeir, A. A. Comparison between shear deformable and Kirchhoff theories for bending, buckling and vibration of antisymmetric angle-ply laminated plates. Compos. Struct., 1989, 13(3), 159–172.

14. Kabir, H. R. H. Analysis of a simply supported plate with symmetric angle-ply laminations. Comput. Struct., 1994, 51(3), 299–307.

15. Putcha, N. S. and Reddy, J. N. Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory. J. Sound Vib., 1986, 104(2), 285–300.

16. Ni, Q.-Q., Xie, J. and Iwamoto, M. Shear buckling analysis of angle-ply laminates with higher-order shear deformation and pb-2 Ritz functions. Sci. Eng. Compos. Mater., 2004, 11(2–3), 123–136.

17. Reddy, J. N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Second Edition. CRC Press, 2003.

18. D’Ottavio, M. and Carrera, E. Variable-kinematics approach for linearized buckling analysis of laminated plates and shells. AIAA J., 2010, 48(9), 1987–1996.

19. Alesadi, A., Galehdari, M. and Shojaee, S. Free vibration and buckling analysis of composite laminated plates using layerwise models based on isogeometric approach and Carrera unified formulation. Mech. Adv. Mater. Struct., 2018, 25(12), 1018–1032.

20. Di Sciuva, M. Geometrically nonlinear theory of multilayered plates with interlayer slips. AIAA J., 1997, 35(11), 1753–1759.

21. Tessler, A., Di Sciuva, M. and Gherlone, M. Refinement of Timoshenko Beam Theory for Composite and Sandwich Beams Using Zigzag Kinematics. NASA Report. NASA/TP-2007-215086, 2007. 

22. Tessler, A., Di Sciuva, M. and Gherlone, M. Refined Zigzag Theory for Laminated Composite and Sandwich Plates. NASA Report. NASA/TP-2009-215561, 2009.

23. Versino, D., Gherlone, M. and Di Sciuva, M. Four-node shell element for doubly curved multilayered composites based on the Refined Zigzag Theory. Compos. Struct., 2014, 118(1), 392–402.

24. Iurlaro, L., Gherlone, M., Di Sciuva, M. and Tessler, A. Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: A comparative study of different theories. Compos. Struct., 2013, 106, 777–792.

25. Treviso, A., Mundo, D. and Tournour, M. A C0-continuous RZT beam element for the damped response of laminated structures. Compos. Struct., 2015, 131, 987–994.

26. Iurlaro, L., Gherlone, M., Mattone, M. and Di Sciuva, M. Experimental assessment of the Refined Zigzag Theory for the static bending analysis of sandwich beams. J. Sandw. Struct. Mater., 2018, 20(1), 86–105.

27. Ascione, A., Orifici, A. C. and Gherlone, M. Experimental and numerical investigation of the Refined Zigzag Theory for accurate buckling analysis of highly heterogeneous sandwich beams. Int. J. Struct. Stab. Dyn., 2020, 20(07), 2050078.

28. Oñate, E., Eijo, A. and Oller, S. Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory. Comput. Methods Appl. Mech. Eng., 2012, 213–216, 362–382.

29. Di Sciuva, M., Gherlone, M., Iurlaro, L. and Tessler, A. A class of higher-order C0 composite and sandwich beam elements based on the Refined Zigzag Theory. Compos. Struct., 2015, 132, 784–803.

30. Versino, D., Gherlone, M., Mattone, M. C., Di Sciuva, M. and Tessler, A. C0 triangular elements based on the Refined Zigzag Theory for multilayered composite and sandwich plates. Compos. B. Eng., 2013, 44(1), 218–230.

31. Gherlone, M., Versino, D. and Zarra, V. Multilayered triangular and quadrilateral flat shell elements based on the Refined Zigzag Theory. Compos. Struct., 2019, 233, 111629.

32. Di Sciuva, M. and Sorrenti, M. A family of C0 quadrilateral plate elements based on the Refined Zigzag Theory for the analysis of thin and thick laminated composite and sandwich plates. J. Compos. Sci., 2019, 3(4), 100.

33. Sorrenti, M., Di Sciuva, M. and Tessler, A. A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory. Comput. Struct., 2021, 242, 106369.

34. Kreja, I. and Sabik, A. Equivalent single-layer models in deformation analysis of laminated multilayered plates. Acta Mech., 2019, 230(7), 2827–2851.

35. Whitney, J. M. The effect of transverse shear deformation on the bending of laminated plates. J. Compos. Mater., 1969, 3(3), 534–547.

36. Loredo, A. Transverse shear warping functions for anisotropic multilayered plates. Class. Phys., arXiv:1211.0781. 

37. Weaver, P. M. Designing composite structures: lay-up selection. Proc. Inst. Mech. Eng.  G, 2002, 216(2), 105–116.

38. Adali, S., Richter, A. and Verijenko, V. E. Minimum weight design of symmetric angle-ply laminates under multiple uncertain loads. Struct. Optim., 1995, 9(2), 89–95.

39. Venkateshappa, S. C., Jayadevappa, S. Y. and Puttiah, P. K. W. Experimental and finite element studies on buckling of skew plates under uniaxial compression. Sci. Eng. ComposMater., 2015, 22(3), 287–296.

40. Zhen, W. and Wanji, C. Buckling analysis of angle-ply composite and sandwich plates by combination of geometric stiffness matrix. Comput. Mech., 2007, 39(6), 839–848.

41. Xiaohui, R. and Zhen, W. Buckling of soft-core sandwich plates with angle-ply face sheets by means of a C0 finite element formulation. Arch. Appl. Mech., 2014, 84(8), 1173–1188.

42. Sorrenti, M. and Di Sciuva, M. An enhancement of the warping shear functions of Refined Zigzag Theory. J. Appl. Mech., 2021, 88(8), 084501.

43. Jones, R. M. Mechanics of Composite Materials. Taylor & Francis, 1999. 

44. Leissa, A. W. Conditions for laminated plates to remain flat under inplane loading. Compos. Struct., 1986, 6(4), 261–270.

45. Whitney, J. M. Structural Analysis of Laminated Anisotropic Plates. CRC Press, Lancaster, PA, 1987. 

46. Loughlan, J. The influence of mechanical couplings on the compressive stability of anti-symmetric angle-ply laminates. Compos. Struct., 2002, 57(1), 473–482.

47. Di Sciuva, M. and Sorrenti, M. Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the Refined Zigzag Theory. J. Sandw. Struct. Mater., 2019, 23(3), 760–802.

48. Matsunaga, H. Vibration and stability of angle-ply laminated composite plates subjected to in-plane stresses. Int. J. Mech. Sci., 2001, 43(8), 1925–1944.

Back to Issue