eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Gershgorin disk theorem in complex interval matrices; pp. 65–76
PDF | 10.3176/proc.2022.1.06

Suman Maiti, Snehashish Chakraverty

In this article, the Gershgorin disk theorem in complex interval matrices is proposed for enclosing interval eigenvalues. This is a non-iterative method for finding eigenvalue bounds for both real and imaginary parts. Moreover, we are able to find gaps between the clusters of interval eigenvalues and have compared the results with the previous theorems for interval eigenvalue bounds for complex interval matrices. These results can be decisive for checking Hurwitz and Schur stability of complex interval matrices that appear in uncertain dynamical systems. Further bounds obtained from the present formulae can be considered as the initial bounds for iterative methods.


1. Hertz, D. The extreme eigenvalues and stability of real symmetric interval matrices. IEEE Trans. Autom. Control, 1992, 37(4), 532–535.

2. Rohn, J. Stability of interval matrices: the real eigenvalue case. IEEE Trans. Autom. Control, 1992, 37(10), 1604–1605.

3. Ahn, H.-S., Chen, Y. Q. and Podlubny, I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Appl. Math. Comput., 2007, 187(1), 27–34.

4. Leng, H. and He, Z. Computing eigenvalue bounds of structures with uncertain-but-non-random parameters by a method based on perturbation theory. Commun. Numer. Methods Eng., 2007, 23(11), 973–982.

5. Leng, H., He, Z. and Yuan, Q. Computing bounds to real eigenvalues of real-interval matrices. Int. J. Numer. Methods Eng., 2008, 74(4), 523–530.

6. Deif, A. The interval eigenvalue problem. ZAMM (J. Appl. Math. Mech.), 1991, 71(1), 61–64.

7. Rohn, J. A Handbook of Results on Interval Linear Problems. Czech Academy of Sciences, Prague, 2005.

8. Hladík, M., Daney, D. and Tsigaridas, E. Bounds on real eigenvalues and singular values of interval matrices. SIAM J. Matrix Anal. Appl., 2010, 31(4), 2116–2129.

9. Rohn, J. Bounds on eigenvalues of interval matrices. ZAMM (J. Appl. Math. Mech.), 1998, 78(S3), 1049–1050.

10. Bauer, F. L. and Fike, C. T. Norms and exclusion theorems. Numer. Math., 1960, 2, 137–141.

11. Chu, K.-w. E. Generalization of the Bauer–Fike theorem. Numer. Math., 1986, 49, 685–691.

12. Hladík, M., Daney, D. and Tsigaridas, E. A filtering method for the interval eigenvalue problem. Appl. Math. Comput., 2011, 217(12), 5236–5242.

13. Mayer, G. A unified approach to enclosure methods for eigenpairs. ZAMM (J. Appl. Math. Mech.), 1994, 74(2), 115–128.

14. Hertz, D. Interval analysis: eigenvalue bounds of interval matrices. In Encyclopedia of Optimization (Floudas, C. and Pardalos, P., eds). Springer, Boston, MA, 2008.

15. Hladík, M. Bounds on eigenvalues of real and complex interval matrices. Appl. Math. Comput., 2013, 219(10), 5584–5591.

16. Matcovschi, M.-H. and Pastravanu, O. Novel estimations for the eigenvalue bounds of complex interval matrices. Appl. Math. Comput., 2014, 234, 645–666.

17. Roy, F. and Gupta, D. K. Sufficient regularity conditions for complex interval matrices and approximations of eigenvalues sets. Appl. Math. Comput., 2018, 317, 193–209.

18. Chakraverty, S., Sahoo, D. M. and Mahato, N. R. Concepts of Soft Computing: Fuzzy and ANN with Programming. Springer, Singapore, 2019.

19. Horn, R. A. and Johnson, C. R. Matrix Analysis. Cambridge University Press, Cambridge, 1985.

20. Meyer, C. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, 2000.

21. Gershgorin, S. Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR, 1931, 7, 749–754.

Back to Issue