ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Waves, oscillations and optics in biomedical engineering: research in the Department of Biomedical Engineering 1994–2014; pp. 288–298
PDF | doi: 10.3176/proc.2014.3.01

Author
Hiie Hinrikus
Abstract

In this historical review the main topics of research in the Department of Biomedical Engineering of the Technomedicum of the Tallinn University of Technology are discussed.

References

  1. Zaharov, B. V., Meigas, K. B., and Hinrikus, H. V. Coherent photodetection with the aid of gas laser. Sov. J. Quant. Electron., 1990, 20, 189–193.
http://dx.doi.org/10.1070/QE1990v020n02ABEH005581

  2. Hinrikus, H. and Meigas, K. Laser doppler device for air pollution detection. In Proc. European Symposium on Optics for Productivity in Manufacturing. Frankfurt/ Main, FR Germany, 1994. SPIE: Automated 3D and 2D Vision, 1994, 2249, 38–47.

  3. Meigas, K. and Nazarenko, S. Simple system for quality assessment of radioaerosols in daily clinical practice. Med. Biol. Eng. Comput., 1996, 34, suppl. 1, 249–250.

  4. Meigas, K. Method for small particle detection by laser. Opt. Eng., 1998, 37, 2587–2591.
http://dx.doi.org/10.1117/1.602012

  5. Krasavin, J. and Hinrikus, H. Performance and optimiza­tion of Gunn self-oscillating mixer. IEEE Microw. Guided W., 1995, 5, 177–179.
http://dx.doi.org/10.1109/75.386123

  6. Meigas, K., Hinrikus, H., Lass, J., and Kattai, R. Self-mixing in a diode laser as a method for coherent photodetection. Proc. Estonian Acad. Sci. Eng., 1998, 4, 307–316.

  7. Meigas, K., Hinrikus, H., Kattai, R., and Lass, J. Self-mixing in a diode laser as a method for cardiovascular diagnostics. J. Biomed. Opt., 2003, 8, 152–160.
http://dx.doi.org/10.1117/1.1528949

  8. Hinrikus, H., Riipulk, J., and Põdra, H. Design of microwave radiometer for early detection of cancer. Phys. Medica, 1997, 8, 324–325.

  9. Riipulk, J. and Hinrikus, H. Microwave radiometry for medical applications. Med. Biol. Eng. Comput., 1999, 37, suppl. 1, 99–102.

10. Hinrikus, H., Riipulk, J., Neemela, T., and Põdra, H. Sensitivity of microwave radiometer for tissue screen­ing. Proc. Estonian Acad. Sci. Eng., 1998, 4, 165–177.

11. Hinrikus, H., Riipulk, J., Beilenhoff, K., and Hart­nagel, H. L. Simulation of breast tissues temperature measurement using Dicke radiometer by FDTD method. Med. Biol. Eng. Comput., 1996, 34, suppl. 1, 135–136.

12. Riipulk, J. and Hinrikus, H. Interpretation of radiometric signal for tumor detection. In Proc. 19th Annual International Conference of the IEEE EMBS. Chicago, IL, 1997, 2509–2511.

13. Lass, J., Kaik, J., Meigas, K., Hinrikus, H., and Bli­nowska, A. Evaluation of the quality of rate adaption algorithms for cardiac pacing. Europace, 2001, 3, 221–228.
http://dx.doi.org/10.1053/eupc.2001.0177

14. Hinrikus, H., Bachmann, M., Kalda, J., Sakki, M., Lass, J., and Tomson, R. Methods of electroencephalographic signal analysis for detection of small hidden changes. Nonlinear Biomed. Phys., 2007, 1, 9; http://www.nonlinearbiomedphys.com/content/1/1/9
http://dx.doi.org/10.1186/1753-4631-1-9

15. Bachmann, M., Kalda, J., Lass, J., Tuulik, V., Sakki, M., and Hinrikus, H. Non-linear analysis of the electro­encephalogram for detecting effects of low-level electro­magnetic fields. Med. Biol. Eng. Comput., 2005, 43, 142–149.
http://dx.doi.org/10.1007/BF02345136

16. Hinrikus, H., Bachmann, M., Karai, D., Klonowski, W., Lass, J., Stepien, P. et al. Higuchi’s fractal dimension for analysis of the effect of external periodic stressor on electrical oscillations in the brain. Med. Biol. Eng. Comput., 2011, 49, 585–591.
http://dx.doi.org/10.1007/s11517-011-0768-5

17. Hinrikus, H., Parts, M., Lass, J., and Tuulik, V. Changes in human EEG caused by low-level modulated electromagnetic radiation stimulation. Bioelectro­magnetics, 2004, 25, 431–440.
http://dx.doi.org/10.1002/bem.20010

18. Hinrikus, H., Bachmann, M., Lass, J., Tomson, R., and Tuulik, V. Effect of 7, 14 and 21 Hz modulated 450 MHz microwave radiation on human electro­encephalo­graphic rhythms. Int. J. Radiat. Biol., 2008, 84, 69–79.
http://dx.doi.org/10.1080/09553000701691679

19. Hinrikus, H., Bachmann, M., Lass, J., and Tuulik, V. Effect of modulated at different low frequencies micro­wave radiation on human EEG. The Environ­mentalist, 2009, 29, 215–219.
http://dx.doi.org/10.1007/s10669-009-9215-7

20. Hinrikus, H., Bachmann, M., Lass, J., Karai, D., and Tuulik, V. Effect of low frequency modulated micro­wave exposure on human EEG: individual sensitivity. Bioelectromagnetics, 2008, 29, 527–538.
http://dx.doi.org/10.1002/bem.20415

21. Bachmann, M., Säkki, M., Kalda, J., Lass, J., Tuulik, V., and Hinrikus, H. Effect of 450 MHz microwave modulated with 217 Hz on human EEG in rest. The Environmentalist, 2005, 25, 165–171.
http://dx.doi.org/10.1007/s10669-005-4279-5

22. Bachmann, M., Kalda, J., Säkki, M., Tomson, R., Lass, J., Tuulik, V., and Hinrikus, H. Individual changes in human EEG caused by 450 MHz microwave modulated at 40 and 70 Hz. The Environmentalist, 2007, 27, 511–517.
http://dx.doi.org/10.1007/s10669-007-9069-9

23. Lass, J., Tuulik, V., Ferenets, R., Riisalo, R., and Hinri­kus, H. Effects of 7 Hz-modulated 450 MHz electro­magnetic radiation on human performance in visual memory tasks. Int. J. Radiat. Biol., 2002, 78, 937–944.
http://dx.doi.org/10.1080/09553000210153934

24. Rodina, A., Lass, J., Riipulk, J., Bachmann, T., and Hinrikus, H. Study of effects of low microwave field by method of face masking. Bioelectromagnetics, 2005, 26, 571–577.
http://dx.doi.org/10.1002/bem.20131

25. Lass, J., Kruusing, K., and Hinrikus, H. Modulated low-level electromagnetic field effect on EEG visual event-related potentials. Estonian J. Eng., 2008, 14, 124–137.
http://dx.doi.org/10.3176/eng.2008.2.03

26. Hinrikus, H., Karai, D., Lass, J., and Rodina, A. Effect of noise in processing of visual information. Nonlinear Biomed. Phys., 2010, 4;
http://dx.doi.org/10.1186/1753-4631-4-S1-S5

27. Suhhova, A., Bachmann, M., Karai, D., Lass, J., and Hinrikus, H. Effect of microwave radiation on human EEG at two different levels of exposure. Bioelectro­magnetics, 2013, 34, 264–274.
http://dx.doi.org/10.1002/bem.21772

28. Lass, J., Riipulk, J., and Hinrikus, H. The sensitivity of living tissue to microwave field. In Proc. 20th Annual International Conference of the IEEE EMBS. Hong Kong, 1998, 20, 3249–3252.

29. Hinrikus, H. and Riipulk, J. Living cell as a receiver of microwave radiation. In Proc. Estonian Acad. Sci. Eng., 1999, 5, 260–269.

30. Hinrikus, H., Bachmann, M., Tomson, R., and Lass, J. Non-thermal effect of microwave radiation on human brain. The Environmentalist, 2005, 25, 187–194.
http://dx.doi.org/10.1007/s10669-005-4282-x

31. Hinrikus, H., Lass, J., and Tuulik, V. Interaction of low-level microwave radiation with nervous system – a quasi-thermal effect? Proc. Estonian Acad. Sci. Eng., 2004, 10, 82–94.

32. Hinrikus, H., Bachmann, M., and Lass, J. Parametric mechanism of excitation of the electroencephalo­graphic rhythms by modulated microwave radiation. Int. J. Radiat. Biol., 2011, 87, 1077–1085.
http://dx.doi.org/10.3109/09553002.2011.620063

33. Hinrikus, H., Lass, J., Karai, D., Pilt, K., and Bach­mann, M. Microwave effect on diffusion: a possible mechanism for non-thermal effect. Electromagn. Biol. Med.,
http://dx.doi.org/10.3109/15368378.2014.921195

34. Bachmann, M., Hinrikus, H., Aadamsoo, K., Võhma, Ü., Lass, J., Rubljova, J. et al. Modulated microwave effects on individuals with depressive disorder. The Environmentalist, 2007, 27, 505–510.
http://dx.doi.org/10.1007/s10669-007-9068-x

35. Hinrikus, H., Suhhova, A., Bachmann, M., Aadam­soo, K., Võhma, Ü., Lass, J., and Tuulik, V. Electro­encephalographic spectral asymmetry index for detec­tion of depression. Med. Biol. Eng. Comput., 2009, 47, 1291–1299.
http://dx.doi.org/10.1007/s11517-009-0554-9

36. Hinrikus, H., Suhhova, A., Bachmann, M., Aadamsoo, K., Võhma, Ü., Pehlak, H., and Lass, J. Spectral features of EEG in depression. Biomed. Eng./Biomed. Tech., 2010, 55, 155–161.
http://dx.doi.org/10.1515/bmt.2010.011

37. Bachmann, M., Lass, J., Suhhova, A., and Hinrikus, H. Spectral asymmetry and Higuchi’s fractal dimension measures of depression electroencephalogram. Comput. Math. Methods Med., 2013,
http://dx.doi.org/10.1155/2013/251638

38. Jenihhin, M., Gorev, M., Pesonen, V., Mihhailov, D., Ellervee, P., Hinrikus, H. et al. EEG analyzer proto­type based on FPGA. In Proc. IEEE 7th International Symposium on Image and Signal Processing and Analysis (ISPA). Dubrovnik, Croatia, 2011, 101–106.

39. Meigas, K., Hinrikus, H., Lass, J., and Kattai, R. Pulse profile registration using self-mixing in diode laser. In Proc. 20th Annual International Conference of the IEEE EMBS. Hong Kong, 1998, 1875–1878.

40. Meigas, K., Hinrikus, H., Kattai, R., and Lass, J. Coherent photodetection for pulse profile registration. Proc. SPIE, Coherence Domain Optical Methods in Bio­medical Science and Clinical Applications III. San Jose, California, 1999, 95–202.

41. Meigas, K., Hinrikus, H., Kattai, R., and Lass, J. Simple coherence method for blood flow detection. Proc. SPIE, Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV. San Jose, California, 2000, 112–120.

42. Hinrikus, H., Tepner, I., Lass, J., and Karai, D. Stability of the relationship between pulse wave delay and arterial blood pressure. In Proc. 12th Nordic Baltic Conference on Biomedical Engineering and Medical Physics. Reykjavik, Iceland, 2002, 2, 22–23.

43. Hinrikus, H., Lass, J., Karai, D., and Tepner, I. Pulse wave parameters as indicators of the state of the arteries. In Proc. 2nd European Medical and Biological Engineering Conference. Vienna, Austria, 2002, 3, 642–643.

44. Pilt, K., Meigas, K., Viigimaa, M., Temitski, K., and Kaik, J. An experimental measurement complex for probable estimation of arterial stiffness. In Proc. 30th Annual International Conference of the IEEE EMBS. Buenos Aires, Argentina, 2010, 194–197.

45. Pilt, K., Meigas, K., Ferenets, R., and Kaik, J. Photo­plethysmographic signal processing using adaptive sum comb filter for pulse delay measurement. Estonian J. Eng., 2010, 16, 78–94.
http://dx.doi.org/10.3176/eng.2010.1.08

46. Pilt, K., Meigas, K., Temitski, K., and Viigimaa, M. Second derivative analysis of forehead photo­plethysmo­graphic signal in healthy volunteers and diabetes patients. In Proc. World Congress on Medical Physics and Biomedical Engineering. Beijing, China, 2012, 39, 410–413.

47. Pilt, K., Ferenets, R., Meigas, K., Lindberg, L. G., Temitski, K., and Viigimaa, M. New photoplethysmo­graphic signal analysis algorithm for arterial stiffness estimation. The Scientific World Journal, 2013,
http://dx.doi.org/10.1155/2013/169035

48. Uhlin, F., Fridolin, I., Lindberg, L. G., and Magnusson, M. Estimating total urea removal and protein catabolic rate by monitoring UV absorbance in spent dialysate. Nephrol. Dial. Transpl., 2005, 20, 2458–2464.
http://dx.doi.org/10.1093/ndt/gfi026

49. Uhlin, F., Fridolin, I., Magnusson, M., and Lindberg, L. G. Dialysis dose (Kt/V) and clearance variation sensitivity using measurement of ultraviolet-absorbance (on-line), blood urea, dialysate urea and ionic dialysance. Nephrol. Dial. Transpl., 2006; 21, 2225–2231.
http://dx.doi.org/10.1093/ndt/gfl147

50. Fridolin, I., Lauri, K., Jerotskaja, J., and Luman, M. Nutrition estimation of dialysis patients by on-line monitoring and kinetic modeling. Estonian J. Eng., 2008, 14, 177–188.
http://dx.doi.org/10.3176/eng.2008.2.07

51. Luman, M., Jerotskaja, J., Lauri, K., and Fridolin, I. Dialysis dose and nutrition assessment by optical on-line dialysis adequacy monitor. Clin. Nephrol., 2009, 72, 303–311.
http://dx.doi.org/10.5414/CNP72303

52. Lauri, K., Tanner, R., Jerotskaja, J., Luman, M., and Fridolin, I. HPLC study of uremic fluids related to optical dialysis adequacy monitoring. Int. J. Artif. Organs, 2010, 33, 96–104.

53. Jerotskaja, J., Uhlin, F., Fridolin, I., Lauri, K., Luman, M., and Fernström, A. Optical on-line monitoring of uric acid removal during dialysis. Blood Purificat., 2010, 29, 69–74.
http://dx.doi.org/10.1159/000264269

54. Lauri, K., Arund, J., Tanner, R., Jerotskaja, J., Luman, M., and Fridolin, I. Behaviour of uremic toxins and UV-absorbance in respect to low and high flux dialyzers. Estonian J. Eng., 2010, 16, 95–106.
http://dx.doi.org/10.3176/eng.2010.1.09

55. Tomson, R., Uhlin, F., Holmar, J., Lauri, K., Luman, M., and Fridolin, I. Development of a method for optical monitoring of creatinine in the spent dialysate. Estonian J. Eng., 2011, 17, 140–150.
http://dx.doi.org/10.3176/eng.2011.2.04

56. Arund, J., Tanner, R., Uhlin, F., and Fridolin, I. Do only small uremic toxins, chromophores, contribute to the online dialysis dose monitoring by UV absorbance? Toxins, 2012, 4, 849–861.
http://dx.doi.org/10.3390/toxins4100849

57. Enberg, P., Uhlin, F., Fridolin, I., Holmar, J., and Fernst­röm, A. Phosphate removal during haemodialysis estimated by UV absorbance. Nephron Clin. Pract., 2012, 121, 1–9.
http://dx.doi.org/10.1159/000341598

58. Holmar, J., Fridolin, I., Uhlin, F., Lauri, K., and Luman, M. Optical method for cardiovascular risk marker uric acid removal assessment during dialysis. TSWJ, 2012,
http://dx.doi.org/10.1100/2012/506486

59. Karai, D., Fridolin, I., Kostin, S., and Ubar, R. Accurate dialysis dose evaluation and extrapolation algorithms during on-line optical dialysis monitoring. IEEE T. Biomed.-Eng., 2013, 60, 1371–1377.

60. Tomson, R., Fridolin, I., Uhlin, F., Holmar, J., Lauri, K., and Luman, M. Optical measurement of creatinine in spent dialysate. Clin. Nephrol., 2013, 79, 107–117.
http://dx.doi.org/10.5414/CN107338

Back to Issue