ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Interrupter technique for assessing respiratory resistance: a review; pp. 335–340
PDF | doi: 10.3176/proc.2014.3.07

Authors
Jana Kivastik, Jaak Talts, Kersti Jagomägi, Rein Raamat
Abstract

The use of interrupter resistance (Rint) is a feasible method of measuring respiratory resistance during bronchodilator and bronchial hyperresponsiveness testing in preschool children. In addition to a single value of Rint, it has been suggested that analysis of recorded oscillations of the mouth pressure may provide additional indices of changes in airway mechanics. This paper reviews the studies concerning analysis of those pressure oscillations, as well as modelling of the respiratory system in order to understand how different structures in this system can influence interrupter measurements.

References

  1. Mitzner, W. Mechanics of the lung in the 20th century. Compr. Physiol., 2011, 1, 2009–2027.

  2. Petty, T. L. John Hutchinson’s mysterious machine revisited. Chest, 2002, 121, 219–224.
http://dx.doi.org/10.1378/chest.121.5_suppl.219S

  3. Kingisepp, P.-H. Alfred Fleisch (1892–1973): Professor of Physiology at the University of Tartu, Estonia. J. Med. Biography, 2011, 19, 34–37.
http://dx.doi.org/10.1258/jmb.2010.010039

  4. Plakk, P., Liik, P., and Kingisepp, P.-H. Hot-wire anemo­meter for spirography. Med. Biol. Eng. Comput., 1998, 36, 17–21.
http://dx.doi.org/10.1007/BF02522852

  5. Kingisepp, P.-H., Talts, J., Loog, P., Raamat, R., and Pert, V. Continuous breath-by-breath registration of pulmonary ventilation and gas exchange. Med. Biol. Eng. Comput., 1999, 37 (Suppl. 1), 315–316.

  6. Kingisepp, P.-H., Loog, P.-T., Peedo, K., Mäger, I., Pohjo­lainen, O., and Plakk, P. Evaluation of constant temperature hot wire airflow transducers using pulmonary wave generator. Eur. Respir. J., 2005, 26 (Suppl. 49), 664s.

  7. Kivastik, J., Gibson, A.-M., and Primhak, R. A.. Feasibility of shortened methacholine challenge in pre-school children. Pediatr. Pulmonol., 2006, 41, 146–150.
http://dx.doi.org/10.1002/ppul.20341

  8. Kivastik, J., Gibson, A.-M., and Primhak, R. A. Methacholine challenge in pre-school children – which outcome measure? Respir. Med., 2007, 101, 2555–2560.
http://dx.doi.org/10.1016/j.rmed.2007.07.002

  9. Phagoo, S. B., Wilson, N. M., and Silverman, M. Evalua­tion of the interrupter technique for measuring change in airway resistance in 5-year-old asthmatic children. Pediatr. Pulmonol., 1995, 20, 387–395.
http://dx.doi.org/10.1002/ppul.1950200609

10. Klug, B. and Bisgaard, H. Measurement of lung function in awake 2-4-year-old asthmatic children during methacholine challenge and acute asthma: a comparison of the impulse oscillation technique, the interrupter technique, and transcutaneous measurement of oxygen versus whole‑body plethysmography. Pediatr. Pulmonol., 1996, 21, 290–300.
http://dx.doi.org/10.1002/(SICI)1099-0496(199605)21:5<290::AID-PPUL4>3.0.CO;2-R

11. Beydon, N., Trang‑Pham, H., Bernard, A., and Gaultier, C. Measurements of resistance by the interrupter technique and of transcutaneous partial pressure of oxygen in young children during methacholine challenge. Pediatr. Pulmonol., 2001, 31, 238–246.
http://dx.doi.org/10.1002/ppul.1034

12. Merkus, P. J. F. M., Stocks, J., Beydon, N., Lombardi, E., Jones, M., Mckenzie, S. A. et al. Reference ranges for interrupter resistance technique: the Asthma UK Initiative. Eur. Respir. J., 2010, 36, 157–163.
http://dx.doi.org/10.1183/09031936.00125009

13. Beydon, N., Davis, S. D., Lombardi, E., Allen, J. L., Arets, H. G., Aurora, P. et al. American Thoracic Society/European Respiratory Society Working Group on Infant and Young Children Pulmonary Function Testing. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in pre­school children. Am. J. Respir. Crit. Care Med., 2007, 175, 1304–1345.
http://dx.doi.org/10.1164/rccm.200605-642ST

14. Rosenfeld, M., Allen, J., Arets, B. H., Aurora, P., Beydon, N., Calogero, C. et al. American Thoracic Society Assembly on Pediatrics Working Group on Infant and Preschool Lung Function Testing. An official American Thoracic Society workshop report: optimal lung function tests for monitoring cystic fibrosis, broncho­pulmonary dysplasia, and recurrent wheezing in children less than 6 years of age. Ann. Am. Thorac. Soc., 2013, 10, S1–S11.

15. Oswald‑Mammosser, M., Charloux, A., Donato, L., Albrech, C., Speich, J. P., Lampert, E., and Lonsdorfer, J. Interrupter technique versus plethysmography for measure­ment of respiratory resistance in children with asthma or cystic fibrosis. Pediatr. Pulmonol., 2000, 29, 213–220.
http://dx.doi.org/10.1002/(SICI)1099-0496(200003)29:3<213::AID-PPUL10>3.0.CO;2-N

16. Pao, C. S., Healy, M. J. R., and McKenzie, S. A. Airway resistance by the interrupter technique: which algorithm for measuring pressure? Pediatr. Pulmonol., 2004, 37, 31–36.
http://dx.doi.org/10.1002/ppul.10364

17. Seddon, P., Wertheim, D., Bridge, P., and Bastian-Lee, Y. How should we estimate driving pressure to measure interrupter resistance in children? Pediatr. Pulmonol., 2007, 42, 757–763.
http://dx.doi.org/10.1002/ppul.20634

18. Frey, U. and Kraemer, R. Interrelationship between post­occlusional oscillatory pressure transients and standard lung function in healthy and asthmatic children. Pediatr. Pulmonol., 1995, 19, 379–388.
http://dx.doi.org/10.1002/ppul.1950190612

19. Frey, U., Schibler, A., and Kraemer, R. Pressure oscillations after flow interruption in relation to lung mechanics. Respir. Physiol., 1995, 102, 225–237.
http://dx.doi.org/10.1016/0034-5687(95)00059-3

20. Frey, U. and Kraemer, R. Oscillatory pressure transients after flow interruption during bronchial challenge test in children. Eur. Respir. J., 1997, 10, 75–81.
http://dx.doi.org/10.1183/09031936.97.10010075

21. Bridge, P. D., Wertheim, D., Jackson, A. C., and McKenzie, S. A. Pressure oscillation amplitude after interruption of tidal breathing as an index of change in airway mechanics in preschool children. Pediatr. Pulmonol., 2005, 40, 420–425.
http://dx.doi.org/10.1002/ppul.20267

22. Talts, J., Kivastik, J., and Jagomägi, K. Amplitude analysis of pressure oscillations after interruption of tidal breathing in preschool children. In Proc. IEEE Eng. Med. Biol. Soc. Confer. Lyon, 2007, 4239–4242.

23. Kivastik, J., Talts, J., and Primhak, R. A. Interrupter technique and pressure oscillation analysis during broncho­constriction in children. Clin. Physiol. Funct. Imaging, 2009, 29, 45–52.
http://dx.doi.org/10.1111/j.1475-097X.2008.00832.x

24. Kivastik, J., Talts, J., Jagomägi, K., Raamat, R., and Vasar, M. Repeatability of pressure oscillation amplitudes during the interrupter measurement of respiratory resistance. IFMBE Proc., 2011, 34, 9–12.
http://dx.doi.org/10.1007/978-3-642-21683-1_2

25. Shephard, R. J. Mechanical characteristics of the human airway in relation to use of the interrupter valve. Clin. Sci., 1963, 25, 263–280.

26. Talts, J. and Kivastik, J. Modelling interrupter measure­ments of respiratory resistance. IFMBE Proc., 2008, 20, 461–464.
http://dx.doi.org/10.1007/978-3-540-69367-3_124

27. Jabłoński, I. and Mroczka, J. Reduction of a linear complex model for respiratory system during airflow interruption. In Proc. IEEE Eng. Med. Biol. Soc. Confer. Buenos Aires, 2010, 730–733.

28. Jabłoński, I., Polak, A. G., and Mroczka, J. Preliminary study on the accuracy of respiratory input impedance measurement using the interrupter technique. Comput. Methods Programs Biomed., 2011, 101, 115–125.
http://dx.doi.org/10.1016/j.cmpb.2010.11.003

29. Jabłoński, I. Properties of occlusional devices in extended time-frequency analysis of post-interrupter respiratory signals. IEEE Sensors J., 2012, 12, 504–511.
http://dx.doi.org/10.1109/JSEN.2010.2101059

30. Jabłoński, I. Computer assessment of indirect insight during an airflow interrupter maneuver of breathing. Comput. Methods Programs Biomed., 2013, 110, 320–332.
http://dx.doi.org/10.1016/j.cmpb.2013.01.001

Back to Issue