ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Physics. Mathematics
Tracking control of nonlinear pneumatic actuator systems using static state feedback linearization of the input–output map; pp. 47–66
PDF | https://doi.org/10.3176/phys.math.2007.1.04

Authors
Jihong Wang, Ülle Kotta ORCID Icon, Jia Ke
Abstract

To achieve more accurate tracking control, a control strategy for servo pneumatic systems based on the feedback linearization theory is presented. The nonlinear pneumatic actuator system is transformed into a linear system description, with a linear input–output map by regular static state feedback and state coordinate transformation. A servo tracking controller is then developed for the system based on the linear system model. Since there exists an inverse trans­formation for the new coordinate system, the designed servo control is transformed back to the original state coordinates with the original input variables. Two different cases are discussed: the pneumatic cylinder is driven (1) by a single five-port proportional valve and (2) by two three-port proportional valves. At the initial stage, for the convenience of analysis, the static friction forces are ignored. They are treated as uncertainties addition to the system in the later sections. For on-line implementation, the controller is simplified to require only position and velocity state variables in its feedback. The simulation results show that the simplified controller can drive the system to achieve the required tracking accuracy.

References

1. Conte, C., Moog, C. H. and Perdon, A. M. Nonlinear control systems. Lecture Notes in Control and Inform. Sci., 1999, 242, Springer-Verlag, London. 

2. Isidori, A. Nonlinear Control Systems, 3rd Edition. Springer-Verlag, London, 1995.
https://doi.org/10.1007/978-1-84628-615-5

3. Jiang, L., Wu, Q. H., Wang, J., Zhang, C. and Zhou, X. X. Robust observer-based nonlinear control of multi-machine power systems, IEE Proc. Power Gener. Distrib., 2001, 148, 623–631.
https://doi.org/10.1049/ip-gtd:20010566

4. Hahn, K. Selecting a linear motion control technology. Control Solutions, 2001, 12–16.

5. Ben-Dov, D. and Salcudean, S. E. A force-controlled pneumatic actuator. IEEE Trans. Robot. Autom., 1993, 11, 906–911.
https://doi.org/10.1109/70.478438

6. Drakunov, S., Hanchin, G. D., Su, W. C. and Ozguner, U. Nonlinear control of a rodless pneumatic servoactuator, or sliding modes versus Coulomb friction. Automatica, 1997, 33, 1401–1408.
https://doi.org/10.1016/S0005-1098(97)00015-0

7. McDonell, B. W. and Bobrow, J. E. Adaptive tracking control of an air powered robot actuator. ASME J. Dynam. Systems, Measurement, Control, 1993, 115, 427–433.
https://doi.org/10.1115/1.2899119

8. Moore, P. R., Pu, J. and Harrison, R. Progression of servo pneumatics towards advanced applications, In Fluid Power Circuit, Component and System Design (Edge, K. and Burrows, C., eds). Research Studies Press, 1993, 347–365.

9. Sesmat, S., Scavarda, S. and Lin-shi, X. Verification of electropneumatic servovalve size using non-linear control theory applied to cylinder position tracking, In The Proceedings of the 4th Scandinavian International Conference on Fluid Power. Tampere, Finland, 1995, 1, 504–511.

10. Van Varseveld, R. B. and Bone, G. M. Accurate position control of a pneumatic actuator using on/off solenoid valves. IEEE/ASME Trans. Mechatronics, 1997, 2, 195–204.
https://doi.org/10.1109/3516.622972

11. Wang, J., Pu, J., Moore, P. R. and Zhang, Z. Modeling study and servo-control of air motor systems. Int. J. Control, 1998, 71, 459–476.
https://doi.org/10.1080/002071798221777

12. Wang, J., Pu, J. and Moore, P. R. A practicable control strategy for servo pneumatic actuator systems. Control Eng. Pract., 1999, 7, 1483–1488.
https://doi.org/10.1016/S0967-0661(99)00115-X

13. Wang, J., Kotta, Ü., Mangan, S. and Wei, J. Robust tracking control of nonlinear pneumatic systems using input/output linearisation by state feedback. Syst. Sci., 2003, 29, 151–165.

14. Anderson, B. W. The Analysis and Design of Pneumatic Systems. Robert E. Krieger Publishing Co., INC, New York, 1976.

15. Armstrong-Helouvry, S., Dupont, P. and Canudas De Wit, C. A survey of model, analysis tool and compensation methods for the control of machines with friction. Automatica, 1994, 30, 1083–1183.
https://doi.org/10.1016/0005-1098(94)90209-7

16. Blackburn, J. F., Reethof, G. and Shearer, J. L. Fluid Power Control. The Technology Press and J. Wiley Inc., New York, 1960.

17. Wang, J., Wang, D. J. D., Moore, P. R. and Pu, J. Modeling study, analysis and robust servo control of pneumatic cylinder actuator systems. IEE Proc. Control Theory Appl., 2001, 148, 35–42.
https://doi.org/10.1049/ip-cta:20010238

 

Back to Issue

Back issues