ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Physics. Mathematics

Tarski’s system of geometry and betweenness geometry with the group of movements; 252-263

Full article in PDF format | 10.3176/phys.math.2007.3.02

Author
Ülo Lumiste

Abstract

Recently, in a paper by Tarski and Givant (Bull. Symbolic Logic, 1999, 5, 175–214), Tarski’s system of geometry was revived. The system originated in Tarski’s lectures of 1926–27, but was published in the 1950s–60s and in 1983. On the other hand, the author’s papers of 2005–07 revived the betweenness geometry, initiated by the Estonian scientists Sarv, Nuut, and Humal in the 1930s, and by the author in 1964. It is established here that Tarski’s system of geometry is essentially the same as Euclidean continuous betweenness geometry with a group of movements.


References

1. Tarski, A. and Givant, S. Tarski’s system of geometry. Bull. Symbolic Logic, 1999, 5, 175–214.
https://doi.org/10.2307/421089

2. Tarski, A. A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica, 1948 (2nd ed. University of California Press, Berkeley and Los Angeles, 1951).

3. Tarski, A. What is elementary geometry? In The Axiomatic Method, with Special Reference to Geometry and Physics. North-Holland Publishing Company, Amsterdam, 1959, 16–29.
https://doi.org/10.1016/S0049-237X(09)70017-5

4. Tarski, A. The Completeness of Elementary Algebra and Geometry. Institut Blaise Pascal, Paris, 1967.

5. Gupta, N. Contributions to the Axiomatic Foundations of Geometry. Doctoral dissertation, University of California, Berkeley, 1965.

6. Schwabhäuser, W., Szmielew, W. and Tarski, A. Metamathematische Methoden in der Geometrie. Hochschultext, Springer-Verlag, Berlin, 1983.
https://doi.org/10.1007/978-3-642-69418-9

7. Veblen, O. A system of axioms for geometry. Trans. Amer. Math. Soc., 1904, 5, 343–384.
https://doi.org/10.1090/S0002-9947-1904-1500678-X

8. Hashimoto, J. Betweenness geometry. Osaka Math. J., 1958, 10, 147–158.

9. Nuut, J. Topologische Grundlagen des Zahlbegriffs. Acta Comment. Univ. Tartuensis (Dorpatensis), 1929, A15, No. 5.

10. Sarv, J. Geomeetria alused. Acta Comment. Univ. Tartuensis (Dorpatensis), 1931, A19, No. 4.

11. Nuut, J. Einige Bemerkungen über Vierpunktaxiome. Acta Comment. Univ. Tartuensis (Dorpatensis), 1932, A23, No. 4.

12. Tudeberg, A. Über die Beweisbarkeit einiger Anordnungsaussagen in geometrischen Axiomensystemen. Acta Comment. Univ. Tartuensis (Dorpatensis), 1934, A26, No. 6.

13. Lumiste, Ü. Geomeetria alused. Tartu Riiklik Ülikool, Tartu, 1964.

14. Lumiste, Ü. On models of betweenness. Eesti NSV Tead. Akad. Toim. Füüs.-Mat. Tehn.-tead., 1964, 13, 200–209 (in Russian).

15. Givant, S. R. and McKenzie, N., eds. Alfred Tarski: Collected Papers. Birkhäuser, Basel, 1986.

16. Pieri, M. La geometria elementare istituita sulle nozioni ‘punto’ é ‘sfera’. Mem. Matem. Fis. Soc. Ital. Scienze, 1908, 15, 345–450.

17. Lumiste, Ü. Relationship between join and betweenness geometries. Proc. Estonian Acad. Sci. Phys. Math., 2005, 54, 131–153.
https://doi.org/10.3176/phys.math.2005.3.01

18. Lumiste, Ü. Betweenness plane geometry and its relationship with convex, linear, and projective plane geometries. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56, 233–251.

19. Prenowitz, W. and Jantociak, J. Join Geometries. A Theory of Convex Sets and Linear Geometry. Springer, New York, 1979.
https://doi.org/10.1007/978-1-4613-9438-9

20. Nut, Yu. Yu. [Nuut, J.] Lobachevskian Geometry in Analytic Representation. Izd. Akad. Nauk SSSR, Moscow, 1961 (in Russian).

21. Lumiste, Ü. Lobachevskian geometry and Estonia, and hyperbolic universe model of Jüri Nuut. Tallinna Tehnikaülik. Toim., 1992, 733, 3–12.

22. Piir, I. Looking back beyond a half century. Proc. Estonian Acad. Sci. Phys. Math., 2001, 50, 187–194.


Back to Issue