ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Physics. Mathematics
Eddy-driven flows over varying bottom topography in natural water bodies; pp. 235–245
PDF | https://doi.org/10.3176/phys.math.2006.4.04

Author
Jaak Heinloo
Abstract

A mechanism of the formation of eddy-driven flows in natural water bodies with varying bottom topography is discussed. The discussion is based on the theory of rotationally anisotropic turbulence. It is argued that a flow develops under the coupled effect of a preferred rotation orientation of turbulent eddies, and bottom topography. The flow formation is illustrated on a simple model. According to the model, flows are formed in regions with the depth smaller than the critical depth predicted by the model. 

References

1. Salmon, R., Holloway, G. and Henderschott, M. C. The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech., 1976, 75, 691–703. 
https://doi.org/10.1017/S0022112076000463

2. Bretherton, F. P. and Haidvogel, D. B. Two dimensional turbulence above topography. J. Fluid Mech., 1976, 78, 129–154. 
https://doi.org/10.1017/S002211207600236X

3. Herring, J. R. On the statistical theory of two dimensional topographic turbulence. J. Atmos. Sci., 1977, 34, 1731–1750. 
https://doi.org/10.1175/1520-0469(1977)034<1731:OTSTOT>2.0.CO;2

4. Holloway, G. A spectral theory of non linear barotropic motion above irregular topography. J. Phys. Oceanogr., 1978, 8, 414–427. 
https://doi.org/10.1175/1520-0485(1978)008<0414:ASTONB>2.0.CO;2

5. Holloway, G. Systematic forcing of large-scale geophysical flows by eddy–topography interaction. J. Fluid Mech., 1987, 184, 463–476. 
https://doi.org/10.1017/S0022112087002970

6. Haidvogel, D. B. and Brink, D. H. Mean currents driven by topographic drag over the continental shelf and slope. J. Phys. Oceanogr., 1986, 16, 2159–2171. 
https://doi.org/10.1175/1520-0485(1986)016<2159:MCDBTD>2.0.CO;2

7. Carnavale, G. F. and Frederiksen, J. S. Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech., 1987, 175, 157–181. 
https://doi.org/10.1017/S002211208700034X

8. Holloway, G. and Sou, T. Measuring skill of a topographic stress parameterization in a large- scale ocean model. J. Phys. Oceanogr., 1996, 26, 1088–1092. 
https://doi.org/10.1175/1520-0485(1996)026<1088:MSOATS>2.0.CO;2

9. Adcock, S. T. and Marshall, D. P. Interactions between geostrophic eddies and the mean circulation over large-scale bottom topography. J. Phys. Oceanogr., 2000, 30, 3232–3238. 
https://doi.org/10.1175/1520-0485(2000)030<3223:IBGEAT>2.0.CO;2

10. Polyakov, I. An eddy parameterization based on maximum entropy production with application to modeling of the Arctic Ocean circulation. J. Phys. Oceanogr., 2001, 31, 2255–2270. 
https://doi.org/10.1175/1520-0485(2001)031<2255:AEPBOM>2.0.CO;2

11. Merryfield, W. J., Cummins, P. F. and Holloway, G. Equilibrium statistical mechanics of baro- tropic flow over finite topography. J. Phys. Oceanogr., 2001, 31, 1880–1890. 
https://doi.org/10.1175/1520-0485(2001)031<1880:ESMOBF>2.0.CO;2

12. Starr, V. P. Physics of Negative Viscosity Phenomena. McGraw-Hill, New York, 1968.

13. Bacri, J.-C. and Perzynski, R. “Negative-Viscosity” effect in a magnetic fluid. Phys. Rev. Lett., 1995, 75, 2128–2131.
https://doi.org/10.1103/PhysRevLett.75.2128

14. Morimoto, H., Maekawa, T. and Matsumoto, Y. Nonequilibrium Brownian dynamics of negative viscosity induced in a magnetic fluid subjected to both ac magnetic and shear flow fields. Phys. Rev. E, 2002, 65, 061508.
https://doi.org/10.1103/PhysRevE.65.061508

15. Smolyakov, A. I., Diamond, P. H. and Malkov, M. Coherent structure phenomena in drift wave–zonal flow turbulence. Phys. Rev. Lett., 2000, 84, 491–494.
https://doi.org/10.1103/PhysRevLett.84.491

16. Heinloo, J. Phenomenological Mechanics of Turbulence. Valgus, Tallinn, 1984 (in Russian). 

17. Heinloo, J. Turbulence Mechanics. Introduction to the General Theory of Turbulence. Estonian Academy of Sciences, Tallinn, 1999 (in Russian).

18. Heinloo, J. The formulation of turbulence mechanics. Phys. Rev. E, 2004, 69, 056317.
https://doi.org/10.1103/PhysRevE.69.056317

19. Rhines, P. B. and Holland, W. R. A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 1979, 3, 289–325.
https://doi.org/10.1016/0377-0265(79)90015-0

20. O’Dwyer,J., Williams,R.G., Lacasce,J.H. and Speer,K.G. Does the potential vorticity distribution constrain the spreading of floats in the North Atlantic? J. Phys. Oceanogr., 2000, 30, 721–732.
https://doi.org/10.1175/1520-0485(2000)030<0721:DTPVDC>2.0.CO;2

21. Toompuu, A., Heinloo, J. and Soomere, T. Modelling of the Gibraltar Salinity Anomaly. Oceanology, 1989, 29, 698–702.

22. Heinloo, J. and Võsumaa, Ü. Rotationally anisotropic turbulence in the sea. Ann. Geophys., 1992, 10, 708–715.

23. Võsumaa, Ü. and Heinloo, J. Evolution model of the vertical structure of the active layer of the sea. J. Geophys. Res., 1996, 101, 25635–25646.
https://doi.org/10.1029/96JC01988

24. Heinloo, J. and Toompuu, A. Antarctic Circumpolar Current as a density-driven flow. Proc. Estonian Acad. Sci. Phys. Math., 2004, 53, 252–265.

25. Eringen, A. C. Micromorphic description of turbulent channel flow. J. Math. Anal. Appl., 1972, 39, 253–266.
https://doi.org/10.1016/0022-247X(72)90239-9

26. Eringen, A. C. and Chang, T. S. Micropolar description of hydrodynamic turbulence. Recent Adv. Engng. Sci., 1968, 5, 1–8.

27. Peddieson, J. An application of the micropolar fluid model to the calculation of turbulent shear flow. Int. J. Eng. Sci., 1972, 10, 23–32.
https://doi.org/10.1016/0020-7225(72)90072-9

28. Eringen, A. C. Theory of micropolar fluids. Math. Mech., 1966, 16, 1–18.
https://doi.org/10.1512/iumj.1967.16.16001

29. Dahler, J. S. Transport phenomena in a fluid composed of diatomic molecules. J. Chem. Phys., 1959, 90, 1447–1475.
https://doi.org/10.1063/1.1730220

30. Dahler, J. S. and Scriven, L. F. Angular momentum of continua. Nature, 1961, 192, 36–37.
https://doi.org/10.1038/192036a0

31. Eringen, A. C. Mechanics of micromorphic continua. In Mechanics of Generalized Continua (Kröner, E., ed.). Springer-Verlag, 1968, 18–33.
https://doi.org/10.1007/978-3-662-30257-6_2

32. Richardson, L. F. Weather Prediction by Numerical Process. Cambridge University Press, Cambridge, 1922.

33. Kolmogoroff, A. N. The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers. C. R. Acad. Sci. URSS, 1941, 30, 376–387.

34. Pedlosky, J. Geophysical Fluid Dynamics. Springer, New York, 1987. 
https://doi.org/10.1007/978-1-4612-4650-3

Back to Issue

Back issues