The little Higgs models predict a rich phenomenology for the future collider experiments. Our attention is focused on the littlest Higgs model. We carry out a Monte Carlo study of the doubly charged Higgs pair production (pp → Φ++Φ−−) in a typical LHC experiment. The branching ratios are fixed using an assumption that, in addition, the observed masses of the neutrinos are generated by triplet Higgs: BR(Φ±± → μ±μ±) = BR(Φ±± → μ±τ±) = BR(Φ±± → τ±τ±) = 1/3. We study the invariant mass distribution of same-charged muon pairs (Φ±± → 2μ±±) together with the background processes from the standard model: bb̄, tt̄, and ZZ production. To suppress the background, we propose a new type of selection rule, suitable in the case of production of the pairs of equal mass particles (Φ±±). This selection rule ensures high significance of the signal over the background of the standard model and implies very small cut of the signal under study. At the Monte Carlo level the doubly charged Higgs can be visible at the LHC in the mass range up to approximate 1 TeV.
1. Arkani-Hamed, N., Cohen, A. G. and Georgi, H. (De)constructing dimensions. Phys. Rev. Lett., 2001, 86, 4757–4761.
https://doi.org/10.1103/PhysRevLett.86.4757
2. Cheng, H.-C., Hill, C. T., Pokorski, S. and Wang, J. The standard model in the latticized bulk. Phys. Rev., 2001, D64, 065007.
https://doi.org/10.1103/PhysRevD.64.065007
3. Arkani-Hamed, N., Cohen, A. G. and Georgi, H. Electroweak symmetry breaking from dimensional deconstruction. Phys. Lett., 2001, B513, 232–240.
https://doi.org/10.1016/S0370-2693(01)00741-9
4. Arkani-Hamed, N., Cohen, A. G., Katz, E. and Nelson, A. E. The littlest Higgs. JHEP, 2002, 07, 034.
https://doi.org/10.1088/1126-6708/2002/07/034
5. Ashie, Y. et al. A measurement of atmospheric neutrino oscillation parameters by super- kamiokande i. Phys. Rev., 2005, D71, 112005.
6. Aliu, E. et al. Evidence for muon neutrino oscillation in an accelerator-based experiment. Phys. Rev. Lett., 2005, 94, 081802.
7. Ahmed, S. N. et al. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. Phys. Rev. Lett., 2004, 92, 181301.
8. Schechter, J. and Valle, J. W. F. Neutrino masses in SU(2) × U(1) theories. Phys. Rev., 1980, D22, 2227–2235.
https://doi.org/10.1103/PhysRevD.22.2227
9. Ma, E. and Sarkar, U. Neutrino masses and leptogenesis with heavy Higgs triplets. Phys. Rev. Lett., 1998, 80, 5716–5719.
https://doi.org/10.1103/PhysRevLett.80.5716
10. Ma, E., Raidal, M. and Sarkar, U. Verifiable model of neutrino masses from large extra dimensions. Phys. Rev. Lett., 2000, 85, 3769–3772.
https://doi.org/10.1103/PhysRevLett.85.3769
11. Ma, E., Raidal, M. and Sarkar, U. Phenomenology of the neutrino-mass-giving Higgs triplet and the low-energy seesaw violation of lepton number. Nucl. Phys., 2001, B615, 313–330.
https://doi.org/10.1016/S0550-3213(01)00416-3
12. Marandella, G., Schappacher, C. and Strumia, A. Little-Higgs corrections to precision data after CERN LEP2. Phys. Rev., 2005, D72, 035014.
https://doi.org/10.1103/PhysRevD.72.035014
13. Huitu, K., Maalampi, J., Pietila, A. and Raidal, M. Doubly charged Higgs at LHC. Nucl. Phys., 1997, B487, 27–42.
https://doi.org/10.1016/S0550-3213(97)87466-4
14. Han, T., Logan, H. E., McElrath, B. and Wang, L.-T. Phenomenology of the little Higgs model. Phys. Rev., 2003, D67, 095004.
ttps://doi.org/10.1103/PhysRevD.67.095004
15. Han, T., Logan, H. E. and Wang, L.-T. 2005 Smoking-gun signatures of little Higgs models.
http://arxiv.org/abs/hep-ph/0506313
16. Azuelos, G. et al. Exploring little Higgs models with atlas at the LHC. Eur. Phys. J., 2005, C39S2, 13–24.
https://doi.org/10.1140/epjcd/s2004-02-002-x
17. Gunion, J. F., Grifols, J., Mendez, A., Kayser, B. and Olness, F. I. Higgs bosons in left-right symmetric models. Phys. Rev., 1989, D40, 1546.
https://doi.org/10.1103/PhysRevD.40.1546
18. Della Negra, M. et al. CMS, the Muon Project: Technical Design Report. CERN, 1997.
19. Sjostrand, T. et al. High-energy-physics event generation with PYTHIA 6.1. Comput. Phys. Commun., 2001, 135, 238–259.
https://doi.org/10.1016/S0010-4655(00)00236-8
20. Barenboim, G., Huitu, K., Maalampi, J. and Raidal, M. Constraints on doubly charged Higgs interactions at linear collider. Phys. Lett., 1997, B394, 132–138.
https://doi.org/10.1016/S0370-2693(96)01670-X
21. Acosta, D. et al. Search for doubly-charged Higgs bosons decaying to dileptons in pp ̄ collisions at √s = 1.96 TeV. Phys. Rev. Lett., 2004, 93, 221802.
https://doi.org/10.2172/842702
22. Abazov, V. M. et al.Search for doubly-charged Higgs boson pair production in the decay to μ+μ+μ−μ− in pp ̄collisions at √s = 1.96 TeV. Phys. Rev. Lett., 2004, 93, 141801.
23. Hektor, A., Anton, L., Kadastik, M., Skaburskas, K. and Teder, H. The first scientific results from the Estonian Grid. Proc. Estonian Acad. Sci. Phys. Math., 2004, 54, 111–127.