A robust version of the output controller design for discrete-time systems is introduced. Instead of a single stable point a stable polytope (or simplex) is preselected in the coefficient space of closed-loop characteristic polynomials. A constructive procedure for generating stable simplexes is given starting from the unit hypercube of reflection coefficients of monic polynomials. This procedure is quite straightforward, because for a special family of polynomials the linear cover of so-called reflection vectors is stable. The root placement of reflection vectors is studied. If a stable target simplex is preselected, then the robust output controller design task is solved by the quadratic programming approach.
1.Keel, L. H. and Bhattacharyya, S. P. A linear programming approach to controller design. Automatica, 1999, 35, 1717–1724.
https://doi.org/10.1016/S0005-1098(99)00080-1
2. Clarke, T. and Griffin, S. J. An addendum to output feedback eigenstructure assignment: retro-assignment. Int. J. Control, 2004, 77, 78–85.
https://doi.org/10.1080/00207170310001643230
3. Duan, G. R. Parametric eigenstructure assignment via output feedback based on singular value decomposition. IEE Proc. Control Theory Appl., 2003, 150, 93–100.
https://doi.org/10.1049/ip-cta:20030142
4. Lordelo, A. D. S. and Ferreira, P. A. V. Interval analysis and design of robust pole assignment controllers. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas. IEEE Piscataway, NJ, 2002, 1461–1466.
5. Ackermann, J. Robust Control. Systems with Uncertain Physical Parameters. Springer- Verlag, London, 1993.
6. Magni, J. F. Robust Modal Control. Kluwer Academic Publishing, New York, 2002.
7. Jetto, L. Strong stabilization over polytopes. IEEE Trans. Autom. Control, 1999, 44, 1211–1216.
https://doi.org/10.1109/9.769376
8. Rotstein, H., Sanchez Pena, R., Bandoni, J., Desages, A. and Romagnoli, J. Robust characteristic polynomial assignment. Automatica, 1991, 27, 711–715.
https://doi.org/10.1016/0005-1098(91)90062-7
9. Henrion, D., Šebek, M. and Kučera, V. Positivepolynomialsandrobuststabilizationwith fixed-order controllers. IEEE Trans. Autom. Control, 2003, 48, 1178–1186.
https://doi.org/10.1109/TAC.2003.814103
10. Scherer, C., Gahinet, P. and Chilali, M. Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Control, 1997, 42, 896–911.
https://doi.org/10.1109/9.599969
11. Galafiore, G. and El Ghaoui, L. Ellipsoidal bounds for uncertain linear equations and dynamical systems. Automatica, 2004, 40, 773–787.
https://doi.org/10.1016/j.automatica.2004.01.001
12. Henrion, D., Peaucelle, D., Arzelier, D. and Šebek, M. Ellipsoidal approximation of the stability domain of a polynomial. IEEE Trans. Autom. Control, 2003, 48, 2255–2259.
https://doi.org/10.1109/TAC.2003.820161
13. Kharitonov, V. L. Asymptotic stability of a family of systems of linear differential equations. Differential Equations, 1978, 14, 1483–1485 (in Russian).
14. Chapellat, H. and Bhattacharyya, S. P. A generalization of Kharitonov’s theorem: robust stability of interval plants. IEEE Trans. Autom. Control, 1989, 34, 306–311.
https://doi.org/10.1109/9.16420
15. Katbab, A. and Jury, E. I. Robust Schur stability of control systems with interval plants. Int. J. Control, 1990, 51, 1343–1352.
https://doi.org/10.1080/00207179008934138
16. Ackermann,J.andKaesbauer,D.Stablepolyhedrainparameterspace.Automatica,2003, 39, 937–943.
https://doi.org/10.1016/S0005-1098(03)00034-7
17. Diaz-Barrero, J. L. and Egozcue, J. J. Characterization of polynomials using reflection coefficients. Appl. Math. E-Notes, 2004, 4, 114–121.
18. Picinbono, B. and Benidir, M. Some properties of lattice autoregressive filters. IEEE Trans. Acoust. Speech Signal Process., 1986, 34, 342–349.
19. Kay, S. M. Modern Spectral Estimation. Prentice Hall, New Jersey, 1988.
20. Oppenheim, A. M. and Schaffer, R. W. Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, 1989.
21. Nurges, Ü. and Luus, R. Discrete Kharitonov’s theorem and robust control. Control Intelligent Systems, 2002, 30, 110–118.
22. Bartlett, A. C., Hollot, C. V. and Huang, L. Root location of an entire polytope of polynomials: it suffices to check the edges. Math. Control Signals System, 1988, 1, 61–71.
https://doi.org/10.1007/BF02551236
23. Nurges, Ü. New stability conditions via reflection coefficients of polynomials. IEEE Trans. Autom. Control, 2005, 50, 1354–1360.
https://doi.org/10.1109/TAC.2005.854614
24. Nurges, Ü. and Rüstern, E. The distance from stability boundary and reflection vectors. In Proceedings of the American Control Conference, Anchorage, USA. IEEE, Piscataway, NJ, 2002, 3908–3913.
https://doi.org/10.1109/ACC.2002.1024539