ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Physics. Mathematics
Lattice distortion by impurities in MgB2; pp. 53–57
PDF | https://doi.org/10.3176/phys.math.2006.1.05

Author
Mihhail Klopov
Abstract

The displacement components of B atoms around substitutional Mg-position impurities in MgB2 were calculated ab initio. The size mismatch determines the dominant out-of-plane B-cage distortion in agreement with the observed (Al, Cu) cell volume changes in mixed crystals. A number of impurities can act as effective interband scatterers. 

References

1. Akimitsu, J. and Murakawa, T. Superconductivity in MgB2. Physica C, 2003, 388–389, 98–102. 
https://doi.org/10.1016/S0921-4534(02)02669-2

2. Medvedeva, N. J., Ivanovskii, A. L., Medvedeva, J. E. and Freeman, A. J. Electronic structure of superconducting MgB2 and related binary and ternary borides. Phys. Rev. B, 2001, 64, 020502 (1–4(R)). 
https://doi.org/10.1103/PhysRevB.64.020502

3. de la Peña, O., Aguayo, A. and de Coss, R. Effects of Al doping on the structural and electronic properties of Mg1–xAlxB2. Phys. Rev. B, 2002, 66, 012511 (1–4). 
https://doi.org/10.1103/PhysRevB.66.012511

4. Renker, B., Bohnen, K. B., Heid, R., Ernst, D., Schober, H., Koza, M., Adelmann, P., Schweiss, P. and Wolf, T. Strong renormalization of phonon frequencies in Mg1–xAlxB2. Phys. Rev. Lett., 2002, 88, 067001 (1–4). 
https://doi.org/10.1103/PhysRevLett.88.067001

5. Profeta, G., Continenza, A. and Massida, S. Phonon and electron-phonon renormalization in Al- doped MgB2. Phys. Rev. B, 2003, 68, 144508 (1–4). 
https://doi.org/10.1103/PhysRevB.68.144508

6. Li, J. Q., Li, L., Liu, F. M., Dong, C., Xiang, J. Y. and Zhao, Z. X. Superconductivity, super- structure, and structure anomalies in Mg1–xAlxB2. Phys. Rev. B, 2002, 65, 132505 (1–3). 
https://doi.org/10.1103/PhysRevB.65.132505

7. Margadonna, S., Prassides, K., Arvanitidis, I., Pissas, M., Papavassiliou, G. and Fitch, A. N. Crystal structure of the Mg1–xAlxB2 superconductors near = 0.5. Phys. Rev. B, 2002, 66, 014518 (1–5). 
https://doi.org/10.1103/PhysRevB.66.014518

8. Cheng, C. H., Zhao, Y., Wang, L. and Zhang, H. Preparation, structure and super-conductivity of Mg1–xAlxB2. Physica C, 2002, 378–381, 244–248. 
https://doi.org/10.1016/S0921-4534(02)01421-1

9. Profeta, G., Continenza, A., Floris, A. and Massidda, S. Cu doping effects in MgB2. Phys. Rev. B, 2003, 67, 174510 (1–3). 
https://doi.org/10.1103/PhysRevB.67.174510

10. Slusky, J. S., Rogado, N., Regan, K. A, Hayward, M. A., Khalifah, P., He, T., Inumaru, K., Loureiro, S. M., Haas, M. K., Zandbergen, H. W. and Cava, R. J. Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1–AlxB2. Nature, 2001, 410, 343–345. 
https://doi.org/10.1038/35066528

11. Barbash, S. V. and Stroud, D. Structural and superconducting transitions in Mg1–AlxB2. Phys. Rev. B, 2002, 66, 012509 (1–4). 
https://doi.org/10.1103/PhysRevB.66.012509

12. Bussmann-Holdes, A. and Bianconi, A. Raising the diboride superconductor transition temperature using quantum interference effects. Phys. Rev. B, 2003, 67, 132509 (1–4). 
https://doi.org/10.1103/PhysRevB.67.132509

13. Kristoffel, N., Örd, T. and Rägo, K. MgB2 two-gap superconductivity with intra- and interband couplings. Europhys. Lett., 2003, 61, 109–115. 
https://doi.org/10.1209/epl/i2003-00256-8

14. Mazin, I. I., Andersen, O. K., Jepsen, O., Dolgov, O. V., Kortus, J., Golubov, A. A., Kuz- menko, A. B. and van der Marel, D. Superconductivity in MgB2: Clean or Dirty? Phys. Rev. Lett., 2002, 89, 107002 (1–4). 
https://doi.org/10.1103/PhysRevLett.89.107002

15. Ohashi, Y. Effects of interband impurity scattering on superconducting density of states in two- band superconductor. Physica C, 2004, 412–414, 41–45. 
https://doi.org/10.1016/j.physc.2003.11.062

16. Erwin, S. C. and Mazin, I. I. Toward one-band superconductivity in MgB2. Phys. Rev. B, 2003, 68, 132505 (1–4). 
https://doi.org/10.1103/PhysRevB.68.132505

17. Kresse, G. and Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47, 558–561. 
https://doi.org/10.1103/PhysRevB.47.558

18. Kresse, G. and Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54, 11169–11186. 
https://doi.org/10.1103/PhysRevB.54.11169

19. Vanderbilt, D. Self-consistent pseudopotentials in a generalized eigenvalue problem. Phys. Rev. B, 1990, 41, 7892–7895. 
https://doi.org/10.1103/PhysRevB.41.7892

20. Kresse, G. and Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter, 1993, 6, 8245–8257. 
https://doi.org/10.1088/0953-8984/6/40/015

Back to Issue

Back issues