This note emphasizes the particular role played by the quantity “entropy multiplied by temperature” in the formulation of canonical thermomechanics either in the bulk or at singular surfaces, especially at shock waves and phase transition fronts, but more generally when working hypotheses of adiabatic or isothermal behaviour must be selected.
1. Maugin, G. A. Material Inhomogeneities in Elasticity. Chapman and Hall, London, 1993.
https://doi.org/10.1007/978-1-4899-4481-8
2. Abeyaratne, R. and Knowles, J. K. A note on the driving traction acting on a propagating interface: adiabatic and non-adiabatic processes of a continuum. ASME J. Appl. Mech., 2000, 67, 829–831.
https://doi.org/10.1115/1.1308577
3. Maugin, G. A. Remarks on the Eshelbian thermomechanics of materials. Mech. Res. Commun., 2002, 29, 537–542.
https://doi.org/10.1016/S0093-6413(02)00304-X
4. Abeyaratne, R., Bhattacharya, K. and Knowles, J. K. Strain-energy functions with local minima: modelling phase transformations using finite thermoelasticity. In Nonlinear Elasticity: Theory and Application (Fu, Y. B. and Ogden, R. W., eds). Cambridge University Press, U.K., 2001, 433–490.
https://doi.org/10.1017/CBO9780511526466.013
5. Berezovski, A. and Maugin, G. A. On the thermodynamic conditions at moving phase-transition fronts in thermoelastic solids. J. Non-Equilib. Thermodyn., 2004, 29, 37–51.
https://doi.org/10.1515/JNETDY.2004.004
6. Maugin, G. A. On canonical equations of continuum thermomechanics. Mech. Res. Commun., 2006, 33, 705–710.
https://doi.org/10.1016/j.mechrescom.2005.09.004
7. Maugin, G. A. On shock waves and phase-transition fronts in continua. ARI, 1998, 50, 141–150.
https://doi.org/10.1007/s007770050008