ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Physics. Mathematics
Phase metastability in shape memory alloys. Dampers in engineering via SMAs; 177–196
PDF | https://doi.org/10.3176/phys.math.2007.2.14

Authors
Vicenç Torra, Antonio Isalgué, Francisco C. Lovey, Ferran Martorell
Abstract

The particular properties of shape memory alloys (SMAs) are related to a martensitic transformation between metastable phases. Their applicability to dampers in civil engineering requires a fully guaranteed behaviour of the SMAs both on mesoscopic and atomic levels. The first one relates the thermomechanical properties (fracture, number of working cycles, summer–winter temperature effects and, for instance, self-heating associated with latent heat and the frictional work converted on heat) and the second one, the actions on the phase transition of the thermodynamic forces (temperature and stress). The properties of the CuAlBe alloy are explained and the characteristics of the NiTi alloy are outlined. By establishing an appropriate model the SMA dampers are introduced inside a structure and, via the ANSYS software, the dynamic response of the free and of the damped structure are obtained by simulation under the action of acceleration from the earthquakes available in the literature. As a conclusion, the conditions for the appropriateness of the dampers are given.

References

1. Lovey, F. C. and Torra, V. Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al. Prog. Mater. Sci., 1999, 44, 189–289.
https://doi.org/10.1016/S0079-6425(99)00004-3

2. Torra, V., Isalgue, A., Martorell, F., Terriault, P. and Lovey, F. C. From experimental data to quake damping by SMA: a critical experimental analysis and simulation. In Proceedings of 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Vol. 2, Kobe, Japan, June 13–16, 2005. ASSISI and JAVIT, Tokyo, 241–248.

3. Isalgué, A., Lovey, F. C., Terriault, P., Martorell, F., Torra, R. M. and Torra, V. SMA for dampers in civil engineering. Mater. Trans., 2006, 47, 682–690.
https://doi.org/10.2320/matertrans.47.682

4. Auguet, C., Isalgué, A., Lovey, F. C., Martorell, F. and Torra, V. Metastable effects on martensitic transformation in SMA. Part IV. Thermomechanical properties of CuAlBe and NiTi observations for dampers in family houses. J. Thermal Anal. Calorimetry, 2007 (to be published).
https://doi.org/10.1007/s10973-006-8034-z

5. DesRoches, R., Leon, R. T. and Ocel, J. Testing and analysis of partially restrained connections using SMA dampers. In Proceedings of 3rd World Conference on Structural Control, Vol. 2, Como, Italy, 2002. Wiley, Chichester, 2003, 375.

6. Faravelli, L. Experimental approach to the dynamic behavior of SMA in their martensitic phase. In Proceedings of 3rd World Conference on Structural Control, Vol. 2, Como, Italy, 2002. Wiley, Chichester, 2003, 163.

7. Collet, M., Foltete, E. and Lexcellent, C. Nonlinear dynamic behaviour of a SMA Experimental and numerical studies. In Proceedings of 3rd World Conference on Structural Control, Vol. 2, Como, Italy, 2002. Wiley, Chichester, 2003, 174.

8. Terriault, P., Brailowski, V. and Settouane, K. The benefits of using phenomenological material laws in finite element modelling of SMA structures. In Proceedings of 3rd World Conference on Structural Control, vol. 2, Como, Italy, 2002. Wiley, Chichester, 2003, 369.

9. Martorell, F., Isalgue, A., Lovey, F. C., Yawny, A. and Torra, V. Physical constraints in SMA applications. One study case: dampers in civil engineering. In Proceedings of SPIE, Vol. 5648, Smart Materials 3, 13–15 December 2004, Sidney, Australia (Wilson, A. R., ed.). Bellingham, Wash., SPIE, 2005, 194.
https://doi.org/10.1117/12.581503

10. Patoor, E., Lagoudas, D. C., Entchev, P. B., Brinson, L. C. and Gao, X. J. Shape memory alloys. Part I: General properties and modelling of single crystals. Mech. Mater., 2006, 38, 391–429.
https://doi.org/10.1016/j.mechmat.2005.05.027

11. Lagoudas, D. C., Entchev, P. B., Popov, P., Patoor, E., Brinson, L. C. and Gao, X. J. Shape memory alloys. Part II: Modelling of Polycrystalls. Mech. Mater., 2006, 38, 430–462.
https://doi.org/10.1016/j.mechmat.2005.08.003

12. Saadat, S., Salichs, J., Noori, M., Hou, Z., Davood, H., Bar-on, I., Suzuki, Y. and Masuda, A. An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Mater. Struct., 2002, 11, 218–229.
https://doi.org/10.1088/0964-1726/11/2/305

13. Peregrina, J. L., Rodriguez de Rivera, M., Torra, V. and Lovey, F. C. Hysteresis in Cu-Zn-Al SMA – From high resolution studies to the time-dependent modeling and simulation. Acta Metall. Mater., 1995, 43, 993–999.
https://doi.org/10.1016/0956-7151(94)00305-2

14. Sutou, Y., Omori, T., Yamauchi, K., Ono, N., Kainuma, R. and Ishida, K. Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Mater., 2005, 53, 4121–4133.
https://doi.org/10.1016/j.actamat.2005.05.013

Back to Issue

Back issues