ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Engineering
Seebeck’s effect in micromachined thermopiles for infrared detection. A review; pp. 338–353
PDF | https://doi.org/10.3176/eng.2007.4.07

Authors
Alexander Graf, Michael Arndt, Gerald Gerlach
Abstract

Beginning with the discovery of Seebeck, thermopiles have come increasingly under the spotlight of commercial infrared sensing. The constantly growing interest has motivated us to write an overview of micromachined thermopiles. The first part deals with the Seebeck effect and discusses the most important physical parameters. In the second part, the most important material systems, techniques and micromachined structures are discussed on the basis of different examples. We explain the motivation behind miniaturized thermopile detectors and give a functional explanation of physical interrelations. Finally, different applications are presented and discussed in terms of their future potential.

References

 1. Seebeck, T. J. Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Abh. Deutsch. Akad. Wiss. Berlin, 1822, 265–373.

  2. Schettino, E. A new instrument for infrared radiation measurements: the thermopile of Macedonio Melloni. Ann. Sci., 1989, 46, 511–517.
doi:10.1080/00033798900200371

  3. Rowe, D. M. (ed.). CRC Handbook of Thermoelectrics, Chapt. “General Principles and Theoretical Considerations”. CRC Press, 1995.

  4. Ashcroft, N. W. and Mermin, N. D. Solid State Physics. Saunders College, Philadelphia, 1976.

  5. Sze, S. M. Semiconductor Devices. J. Wiley, New York, 2002.
doi:10.1007/0-306-47622-3_10

  6. Van Herwaarden, A. W. The Seebeck effect in silicon ICs. Sensors Actuators, 1984, 6, 245–254.
doi:10.1016/0250-6874(84)85020-9

  7. Rowe, D. M. (ed.). CRC Handbook of Thermoelectrics, Chapt. “Thermoelectric transport theory”. CRC Press, 1995.

  8. Dehe, A., Fricke, K. and Hartnagel, H. L. Infrared thermopile sensor based on AlGaAs-GaAs micromachining. Sensors Actuators A, 1995, 47, 432–436.
doi:10.1016/0924-4247(94)00936-C

  9. Gaballe, T. H. and Hull, G. W. Seebeck effect in silicon. Phys. Rev., 1955, 98, 940–947.
doi:10.1103/PhysRev.98.940

10. Rittner, E. S. and Neumark, G. F. Theoretical bound on the thermoelectric figure of merit of two-band semiconductors. J. Appl. Phys., 1963, 34, 2071–2077.
doi:10.1063/1.1729739

11. Rowe, D. M. (ed.). CRC Handbook of Thermoelectrics, Chapt. “Optimization of Carrier Concentration”. CRC Press, 1995.

12. Van Herwaarden, A. W. and Sarro, P. M. Thermal sensors based on the Seebeck effect. Sensors Actuators, 1986, 10, 321–346.
doi:10.1016/0250-6874(86)80053-1

13. Salvadori, M. C., Vaz, A. R., Teixeira, F. S. and Cattani, M. Thermoelectric effect in very thin film Pt/Au thermocouples. Appl. Phys. Lett., 2006, 88.

14. Mzerd, A., Tchelibou, F., Sackda, A. and Boyer, A. Improvement of thermal sensors based on Bi2Te3, Sb2Te3 and Bi0.1Sb1.9Te3. Sensors Actuators A, 1995, 47, 387–390.
doi:10.1016/0924-4247(94)00926-9

15. Lahiji, G. R. and Wise, K. D. A monolithic thermopile detector fabrication using integrated-circuit technology. In International Electron Devices Meeting, Washington DC, Technical Digest. 1980, 676–679.

16. Elbel, T. Miniaturized thermoelectric radiation sensor. Sensors Materials A, 1991, 3, 97–109.

17. Elbel, T., Poser, S. and Fischer, H. Thermoelectric radiation microsensors. Sensors Actuators A, 1994, 42, 493–496.
doi:10.1016/0924-4247(94)80040-5

18. Völklein, F., Wiegand, A. and Baier, V. High-sensitivity radiation thermopiles made of Be-Sb-Te films. Sensors Actuators A, 1991, 29, 87–91.
doi:10.1016/0924-4247(91)87109-G

19. Simon, I. and Arndt, M. Thermal and gas sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sensors Actuators A, 2002, 97–98, 104–108.
doi:10.1016/S0924-4247(01)00825-1

20. Meijer, G. C. M. and Herwaarden, A. W. Thermal Sensors, vol. 1. Institute of Physics Publishing, Bristol, Philadelphia, 1994.

21. Van Herwaarden, A. W., van Duyn, D. C., van Oudheusden, B. W. and Sarro, P. M. Integrated thermopile sensor. Sensors Actuators A, 1989, 22, 621–630.
doi:10.1016/0924-4247(89)80046-9

22. Elbel, T. Miniaturized thermoelectric radiation sensor covering a wide range with respect to sensitivity or time constant. Sensors Actuators A, 1991, 27, 653–656.
doi:10.1016/0924-4247(91)87066-C

23. Simon, I. Thermal Conductivity and Metal Oxide Gas Sensors. PhD Thesis, Eberhard-Karls-Universität Tübingen, 2003.

24. Van Herwaarden, A. W., Sarro, P. M. and Meijer, G. C. Integrated vacuum sensor. Sensors Actuators, 1985, 8, 187–196.
doi:10.1016/0250-6874(85)85002-2

25. Sarro, P. M. and van Herwaarden, A. W. Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications. J. Electrochem. Soc., 1986, 133, 1724–1729.
doi:10.1149/1.2109003

26. Elbel, T., Lenggenhager, R. and Baltes, H. Model of thermoelectric radiation sensors made by CMOS and micromachining. Sensors Actuators A, 1992, 35, 101–106.
doi:10.1016/0924-4247(92)80147-U

27. Arndt, M. and Sauer, M. Spectroscopic carbon dioxide sensor for automotive applications. In Proc. IEEE Sensors 2004. Vienna, 2004, vol. 1, 252–255.

28. Schilz, J. Thermoelectric Infrared Sensors (Thermopiles) for Remote Temperature Measurements; Pyrometry}. Whitepaper, PerkinElmer, July, 2000.

29. Sauer, M. and Arndt, M. Infrared carbon dioxide sensor and its applications in automotive air-conditioning systems. In Advanced Microsystems for Automotive Applications (Valldorf, J. and Gessner, W., eds.). 2005, vol. 8, 323–333.

30. Rubio, R., Santander, J., Sabate, N., Fonseca, L., Gracia, I., Moreno, M. and Marco, S. Thermopile sensor array for an electronic nose integrated non-selective NDIR detection system. In Proc. Spanish Conference on Electron Devices. Tarragona, 2005, 503–505.

31. Graf, A., Arndt, M. and Sauer, M. NDIR sensor with overlapping broad band filters and modulated IR source for gas analysis. In Proc. 8th International Conference for Infrared Sensors and System (IRS). Nuremberg, 2006.

32. Schilz, J. Applications of Thermoelectric Infrared Sensors (Thermopiles): Gas Detection by Infrared Absorption; NDIR. Whitepaper, PerkinElmer, August, 2000.

33. Kodato, S., Wakabayashi, T., Zhuang, Q. and Uchida, S. New structure for DC-60 GHZ thermal power sensor. In IEEE MTT-S International Microwave Symposium Digest. New York, 1996, vol. 2, 871–874.

34. Van Oudheusden, B. W. Silicon thermal flow sensor with a two-dimensional direction sensitivity. Measur. Sci. Technol., 1990, 1, 565–575.
doi:10.1088/0957-0233/1/7/005

35. Oda, S., Anzai, M., Uematsu, S. and Watanabe, K. A silicon micromachined flow sensor using thermopiles for heat transfer measurements. IEEE Trans. Instrum. Measur., 2003, 52, 1155–1159.
doi:10.1109/TIM.2003.815997

Back to Issue

Back issues