Nanometerscale textured layers were achieved by annealing corresponding elemental layers, deposited in nanometerscale thickness which fits to the intended stoichiometry of the resulting compounds. The compound formation as well as the accompanying thermoelectric properties are reported. The compound formation corresponds in particular to the evolution of the Seebeck coefficient.
1. Harman, T. C., Taylor, P. J., Walsh, M. P. and La Forge, B. E. Quantum Dot superlattice materials and devices. Science, 2002, 297, 2229–2232.
doi:10.1126/science.1072886
2. Venkatasubramanian, R., Siivola, E., Colpitts, T. and O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413, 597–602.
doi:10.1038/35098012
4. Harris, F. R., Standridge, S., Feik, C. and Johnson, D. C. Design and synthesis of [(Bi2Te3)x(TiTe2)y] super-lattices. Angew. Chem. Int. Engl., 2003, 42, 5295–5299.
5. New thermoelectric components using microsystem technologies. IEEE J. Microelectromech. Syst., 2004, 13, 414–420.
doi:10.1109/JMEMS.2004.828740
7. Fleurial, J.-P., Borshchevsky, A., Ryan, M. A., Phillips, W., Kolawa, E., Kacisch, T. and Ewell, R. Thermoelectric microcoolers for thermal management applications. In Proc. 16th International Conference on Thermoelectrics. Dresden, 1997, 641–645.