ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
The effect of pyrolysis conditions on the composition of Chinese Jimsar shale oil using FT-IR, 1H-NMR and 13C-NMR techniques; pp. 37–60
PDF | 10.3176/oil.2022.1.03

Authors
Hao Lu, Luwei Pan, Yue Guo, Fangqin Dai, Shaohui Pei, Jianning Huang, Shuang Liu
Abstract

Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) were used to characterize the functional groups and structural parameters of shale oil obtained from the pyrolysis of Chinese Jimsar oil shale under different process conditions: pyrolysis temperature 480, 500, 520, 550 °C, residence time 10, 20, 30, 40 min and heating rate 2, 5, 8, 10 °C/min. The results show that the main substances in shale oil are aliphatic components, mainly –CH2 with antisymmetric stretching vibrations. The longest aliphatic chain of shale oil is at the pyrolysis temperature of 520 °Cthe residence time of 20 min and the heating rate of 5 °C/min. The relative content of aromatics in shale oil is less than 20%. Di-substitution is the main substitution mode of the benzene ring, accounting for more than 45%. The results also indicate that the relative content of oxygen-containing functional groups (C–O and C=O) is much smaller than that of –CH2 and –CH3, while the relative content of C–O is higher than that of C=O functional groups. The increase of temperature, heating rate and residence time contributes to the formation of aromatic compounds.

References

1. Mozaffari, P., Baird, Z. S., Listak, M., Oja, V. Vapor pressures of narrow gasoline fractions of oil from industrial retorting of Kukersite oil shale.Oil Shale, 2020, 37(4), 288‒303.
https://doi.org/10.3176/oil.2020.4.03

2. Kairbekov, Z. K., Masuda, N., Ohshima, M. A., Myltykbaeva, Z. K., Kairbayeva, N., Yemilyanova, V. S., Kurokawa, H., Miura, H. Preliminary analysis of oil shale obtained from Kalynkara in Kazakhstan. J. Japan. Pet. Inst., 2014, 57(4), 192‒195.
https://doi.org/10.1627/jpi.57.192

3. Dong, R. T., Xia, L. Z., Wang, H. N., Jiao, D. S. 3-D CFD simulation of oil shale drying in fluidized bed and experimental verification. Oil Shale, 2020, 37(4), 334‒356.
https://doi.org/10.3176/oil.2020.4.06

4. Bai, J. R., Bai, Z., Li, S. Y., Wang, Q. Process simulation of oil shale comprehensive utilization system based on Huadian-type retorting technique. Oil Shale, 2015, 32(1), 66‒81.
https://doi.org/10.3176/oil.2015.1.05

5. Yue, C. T., Liu, Y., Ma, Y., Li, S. Y., He, J. L., Qiu, D. K. Influence of retorting conditions on the pyrolysis of Yaojie oil shale. Oil Shale, 2014, 31(1), 66‒78.
https://doi.org/10.3176/oil.2014.1.07

6. Azzam, S. M. The Combustion of Low Calorific Value Fuels Using a Fluidized Bed Combustor. M.Sc. Thesis, Mech. Eng. Dept., Jordan University of Science and Technology, Irbid, 1993.

7. Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T., Pihu, T., Prikk, A., Tiikma, T. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale, 2005, 22(4), 381‒397.

8. Sidorkin, V. T., Tugov, A. N., Vereshchetin, V. A., Mel’nikov, D. A. Assessment of combustion of oil shale refinery by-products in a TP-101 boiler. Therm. eng. (Toukyou. Online), 2015, 62(4), 271‒277.
https://doi.org/10.1134/S0040601515040096

9. Liu, Z. J., Meng, Q. T., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q, Liu, R., Jia, J. Characteristics and resource potential of oil shale in China. Oil Shale, 2017, 34(1), 15‒41.
https://doi.org/10.3176/oil.2017.1.02

10. Zhang, Y., Han, Z. N., Wu, H., Lai, D. G., Glarborg, P., Xu, G. W. Interactive matching between the temperature profile and secondary reactions of oil shale pyrolysis. Energy Fuels, 2016, 30(4), 2865‒2873.
https://doi.org/10.1021/acs.energyfuels.6b00227

11. Wang, W., Ma, Y., Li, S., Shi, J., Teng, J. Effect of temperature on the EPR properties of oil shale pyrolysates. Energy Fuels, 2016, 30(2), 830‒834.
https://doi.org/10.1021/acs.energyfuels.5b02211

12. Nguimbi, G. R., Sun, Y., Guo, M., Bolou, D. B., Ondon, B. S., Cryton, P. Pyrolysis and evaluation of oil shale product yield and composition from Tchikatanga-Makola (Congo) oil shale. Int. Energy J., 2016, 16(1), 37‒45.

13. Siramard, S., Bunman, Y., Lai, D., Xu, G. Pyrolysis of Huadian oil shale in an infrared heating reactor. Energy Fuels, 2017, 31(7), 6996‒7003.
https://doi.org/10.1021/acs.energyfuels.7b00964

14. Kaljuvee, T., Štubňa, I., Húlan, T., Kuusik, R. Heating rate effect on the thermal behavior of some clays and their blends with oil shale ash additives. J. Therm. Anal. Calorim., 2016, 127(1), 33‒45.
https://doi.org/10.1007/s10973-016-5347-4

15. Lin, L. X., Lai, D. G., Guo, E., Zhang, C., Xu, G. W. Oil shale pyrolysis in in-directly heated fixed bed with metallic plates of heating enhancement. Fuel, 2016, 163, 48‒55.
https://doi.org/10.1016/j.fuel.2015.09.024

16. Liang, K., Liang, J., Shi, L., Ma, G., Wang, L., Wang, J., Liang, P. Effects of heating rate on the pyrolysis characteristics and kinetics of Huadian oil shale. Journal of Mining Science and Technology, 2018, 3(2), 194–200 (in Chinese).

17. Litster, J. D., Newell, R. B., Bell, P. R. F. Pyrolysis of Rundle oil shale in a continuous fluidized bed retort. Fuel, 1988, 67(10), 1327‒1330.
https://doi.org/10.1016/0016-2361(88)90112-3

18. Nazzal, J. M., The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale. Energ. Convers. Manag., 2008, 49(11), 3278‒3286.
https://doi.org/10.1016/j.enconman.2008.03.028

19. Huang, Y. R., Fan, C., Han, X. X., Jiang, X. M. A TGA-MS investigation of the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale, Oil Shale, 2016, 33(2), 125‒141.
https://doi.org/10.3176/oil.2016.2.03

20. Huang, Y. R., Han, X. X., Jiang, X. M. Comparison of fast pyrolysis characteristics of Huadian oil shales from different mines using Curie-point pyrolysis-GC/MS. Fuel Process. Technol., 2014, 128, 456‒460.
https://doi.org/10.1016/j.fuproc.2014.08.007

21. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales. Fuel, 1999, 78(6), 653‒662.
https://doi.org/10.1016/S0016-2361(98)00190-2

22. Xiao, G. D., Dong, D. M., Liao, T. Q., Li, Y., Zheng, L., Zhang, D. Y., Zhao, C. J. Detection of pesticide (Chlorpyrifos) residues on fruit peels through spectra of volatiles by FTIR. Food Anal. Methods, 2015, 8(5), 1341‒1346.
https://doi.org/10.1007/s12161-014-0015-4

23. Szymanska-Chargot, M., Chylinska, M., Kruk, B., Zdunek, A. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development. Carbohydr. Polym., 2015, 115, 93‒103.
https://doi.org/10.1016/j.carbpol.2014.08.039

24. Magerman, C. M. The Evaluation of Fourier Transform Infrared (FT-IR) Spectroscopy for Quantitative and Qualitative Monitoring of Alcoholic Wine Fermentation. M.Sc. Thesis, Stellenbosch University, 2009.

25. Chamberlain, N. F. Determining molecular structure by nuclear magnetic resonance of hydrogen. Analytical Chemistry, 1959, 31(1), 56‒77.
https://doi.org/10.1021/ac60145a013

26. Becker, E. D., Fisk, C. L. NMR: New techniques for chemical analysis and biological investigation. In: Research Instrumentation for the 21stCentury (Beecher, G. R., ed.). Springer Netherlands, 1988, 269‒291.
https://doi.org/10.1007/978-94-009-2748-3_14

27. Jackson, R. L., Strange, J. H. Molecular motion in the plastic phase of pivalic acid studied by nuclear magnetic resonance. Mol. Phys., 1971, 22(2), 313‒323.
https://doi.org/10.1080/00268977100102581

28. Wang, Q., Cui, D., Wang, P., Bai, J. R., Wang, Z. C., Liu, B. A comparison of the structures of >300 °C fractions in six Chinese shale oils obtained from different locations using 1H NMR, 13C NMR and FT-IR analyses. Fuel, 2018, 211, 341‒352.
https://doi.org/10.1016/j.fuel.2017.09.071

29. Molina, V. D., Ariza, E., Poveda, J. C. Structural differences among the asphaltenes in Colombian light crudes from the Colorado Oil field. Energy Fuels, 2017, 31(1), 133‒139.
https://doi.org/10.1021/acs.energyfuels.6b01887

30. Bansal, V., Krishna, G. J., Singh, A. P., Gupta, A. K., Sarpal, A. S. Determination of Hydrocarbons Types and Oxygenates in Motor Gasoline: A Comparative Study by Different Analytical Techniques. Energy Fuels, 2008, 22(1), 410‒415.
https://doi.org/10.1021/ef070121l

31. Pan, L. W., Dai, F. Q., Pei, S. H., Huang, J. N., Liu, S. Influence of particle size and temperature on the yield and composition of products from the pyrolysis of Jimsar (China) oil shale. J. Anal. Appl. Pyrolysis, 2021, 157, 105211.
https://doi.org/10.1016/j.jaap.2021.105211

32. Bruan, V., Halim, M., Ziyad, M., Largeau, C., Amblès, A. Characterization of the Moroccan Timahdit (X-layer) oil shale kerogen using pyrolysis and thermally assisted hydrolysis and methylation. J. Anal. Appl. Pyrolysis, 2001, 61(1), 165‒179.
https://doi.org/10.1016/S0165-2370(01)00131-0

33. Ma, Y. H., Zhu, J. X., He, H. P., Yuan, P., Shen, W., Liu, D. Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectrochim. Acta A., 2010, 76(2), 122‒129.
https://doi.org/10.1016/j.saa.2010.02.038

34. Guo, Y., Wu, P. FTIR spectroscopic study of the acrylamide states in AOT reversed micelles. J. Mol. Struct., 2008, 883884, 31‒37.
https://doi.org/10.1016/j.molstruc.2007.11.009

35. Jiang, H. B. Experimental study on low temperature pyrolysis process of oil shale and key components of circulating fluidized bed. 2016 (in Chinese).

36. Al-Harahsheh, A., Al-Ayed, O., Al-Harahsheh, M., Abu-El-Halawah, R. Heating rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale. J. Anal. Appl. Pyrolysis, 2010, 89(2), 239‒243.
https://doi.org/10.1016/j.jaap.2010.08.009

37. Wang, S., Liu, J. G., Jiang, X. M., Han, X. X., Tong, J. H. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27‒47.
https://doi.org/10.3176/oil.2013.1.04

38. Painter, P. C., Snyder, R. W., Starsinic, M., Coleman, M. M., Kuehn, D. W., Davis, A. Concerning the application of FT-IR to the study of Coal: A critical assessment of band assignments and the application of spectral analysis programs. Appl. Spectrosc., 1981, 35(5), 475‒485.
https://doi.org/10.1366/0003702814732256

39. Huang, Y. R., Han, X. X., Jiang, X. M. Characterization of Dachengzi oil shale fast pyrolysis by Curie-point pyrolysis-GC-MS. Oil Shale, 2015, 32(2), 134‒150.
https://doi.org/10.3176/oil.2015.2.04

40. Tong, J. H., Han, X. X., Wang, S., Jiang, X. M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD). Energy Fuels, 2011, 25(9), 4006‒4013.
https://doi.org/10.1021/ef200738p

41. Chi, M. S., Wang, Q., Shi, J. X., Liu, Q., Cui, D., Pan, S. 1H nuclear magnetic resonance-based chemical structure characteristics analysis of Huadian shale oil. Science Technology and Engineering, 2018, 18(11), 82‒88 (in Chinese).

42. Wang, Q., Ge, J. X., Jia, C. X., Xu, X. F., Liu, H. P. Influence of retorting end temperature on chemical structure of oil-sand oil. CIESC Journal, 2013, 64(11), 4216‒4222 (in Chinese).

43. Wang, Q., Cui, D., Chi, M. S., Zhang, H. X., Xu, X. C. Influence of final retorting temperature on composition and property of Huadian shale oil. CIESC Journal, 2015, 66(7), 2670‒2677 (in Chinese).

44. Nazzal, J. M. Influence of heating rate on the pyrolysis of Jordan oil shale. J. Anal. Appl. Pyrolysis, 2002, 62(2), 225‒238.
https://doi.org/10.1016/S0165-2370(01)00119-X

45. Wang, S, Jiang, X. M., Han, X. X., Tong, J. H. Effect of retorting temperature on product yield and characteristics of non-condensable gases and shale oil obtained by retorting Huadian oil shales. Fuel Process. Technol., 2014, 121, 9‒15.
https://doi.org/10.1016/j.fuproc.2014.01.005

Back to Issue