ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Multivariate models based on infrared spectra as a substitute for oil property correlations to predict thermodynamic properties: evaluated on the basis of the narrow-boiling fractions of Kukersite retort oil; pp. 20–36
PDF | 10.3176/oil.2022.1.02

Authors
Zachariah Steven Baird, Vahur Oja
Abstract

This article investigates a potential for using models based on infrared spectra to predict basic thermodynamic properties of narrow boiling range oil fractions or pseudocomponents. The work took advantage of the simultaneous availability of a property database of narrow boiling range fractions of Kukersite oil shale retort oil (from the industrial retorting process) together with infrared spectra of these fractions. The work was based on the hypothesis that the models based on infrared spectra could potentially be used to reduce experimental data when developing other predictive methods, or even as a substitute for other prediction methods. In this study four basic oil properties, which are often used to predict other thermodynamic properties, were predicted from infrared spectra using support vector regression. These were specific gravity, refractive index parameter, average boiling point and molecular weight. According to bulk property prediction approach these selected properties can be grouped into energy parameters (two former) and size parameters (two latter). It was found that, for distillation fractions with varying compositions, both the energy parameters (specific gravity, refractive index) as well as the size parameters (molecular weight, average boiling point) can be predicted from Fourier transform infrared (FTIR) spectra, and that the accuracy of the predictions based on infrared spectra was comparable with the accuracies of petroleum bulk property correlations. Thus, infrared spectra can provide a convenient alternative in the thermodynamic property prediction field because they can be easily measured and correlated to a wide variety of properties.

References

1. De Hemptinne, J. C., Behar, E. Thermodynamic modelling of petroleum fluids. Oil Gas Sci. Technol., 2006, 61(3), 303‒317.
https://doi.org/10.2516/ogst:2006036a

2. Riazi, M. R., Al-Enezi, G. A. Modelling of the rate of oil spill disappearance from seawater for Kuwaiti crude and its products. Chem. Eng. J.,1999, 73,161‒172.
https://doi.org/10.1016/S1385-8947(99)00034-0

3. Riazi, M. R., Daubert, T. E. Characterization parameters for petroleum fractions. Ind. Eng. Chem. Res., 1987, 26(4), 755–759.
https://doi.org/10.1021/ie00064a023

4. Riazi, M. R. Characterization and Properties of Petroleum Fractions. ASTM International, 2005.
https://doi.org/10.1520/MNL50_1ST-EB

5. Kollerov, D. K. Physicochemical Properties of Oil Shale and Coal Liquids. Moscow, 1951 (in Russian).

6. Tsonopoulos, C., Heidman, J. L., Hwang, S. C. Thermodynamic and Transport Properties of Coal Liquids. John Wiley & Sons, 1986.

7. Oja, V., Suuberg, E. M. Oil shale processing, chemistry and technology. In: Encyclopedia of Sustainability Science and Technology(Meyers, R. A., ed.), Springer, 2012, 7457−7491.
https://doi.org/10.1007/978-1-4419-0851-3_102

8. Lee, S. Oil Shale Technology. CRC Press, 1990.

9. Urov, K., Sumberg, A. Characteristics of oil shales and shale-like rocks of known deposits and outcrops: monograph. Oil Shale, 1999, 16(3 SPECIAL), 1‒64.

10. Kogerman, P. N. On the Chemistry of the Estonian Oil Shale “Kukersite”. Tartu, Estonia, Oil Shale Research Laboratory, 1931.

11. Baird, Z. S., Oja, V., Järvik, O. Distribution of hydroxyl groups in kukersite shale oil: quantitative determination using Fourier transform infrared (FT-IR) spectroscopy. Appl. Spectrosc., 2015, 69(5), 555–562.
https://doi.org/10.1366/14-07705

12. Baird, Z. S., Oja, V. Predicting fuel properties using chemometrics: a review and an extension to temperature dependent physical properties by using infrared spectroscopy to predict density. Chemom. Intell. Lab. Syst., 2016, 158, 41–47.
https://doi.org/10.1016/j.chemolab.2016.08.004

13. Pavoni, B., Rado, N., Piazza, R., Frignani, S. FT-IR spectroscopy and chemo-metrics as a useful approach for determining chemical-physical properties of gasoline, by minimizing analytical times and sample handling. Annali di Chimica, 2004, 94(7‒8), 521‒532.
https://doi.org/10.1002/adic.200490066

14. Pasquini, C., Bueno, A. F. Characterization of petroleum using near-infrared spectroscopy: Quantitative modeling for the true boiling point curve and specific gravity. Fuel, 2007, 86(12‒13), 1927‒1934.
https://doi.org/10.1016/j.fuel.2006.12.026

15. Cooper, J. B., Wise, K. L., Groves, J., Welch, W. T. Determination of octane numbers and Reid vapor pressure of commercial petroleum fuels using FT-Raman spectroscopy and partial least-squares regression analysis. Anal. Chem., 1995, 67(22), 4096‒4100.
https://doi.org/10.1021/ac00118a011

16. Huang, P. K. Characterization and Thermodynamic Correlations for Undefined Hydrocarbon Mixtures. Ph.D. Thesis, Pennsylvania State Univ., University Park, 1977.

17. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3 SPECIAL), 324–332.

18. Elenurm, A., Oja, V., Tali, E., Tearo, E., Yanchilin, A. Thermal processing of dictyonema argillite and kukersite oil shale: Transformation and distribution of sulfur compounds in pilot-scale Galoter process. Oil Shale, 2008, 25(3), 328−333.
https://doi.org/10.3176/oil.2008.3.04

19. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7),799–804.
https://doi.org/10.1016/S0016-2361(02)00358-7

20. Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damsté, J. S., Tegelaar, E. W., de Leeuw, J. W. Characterization of Estonian Kukersite by spectroscopy and pyrolysis: Evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen. Org. Geochem., 1990, 16(4‒6), 873–888.
https://doi.org/10.1016/0146-6380(90)90124-I

21. Oja, V., Rooleht, R., Baird, S. Z. Physical and thermodynamic properties of kukersite pyrolysis shale oil: literature review. Oil Shale, 2016, 33(2), 184−197.
https://doi.org/10.3176/oil.2016.2.06

22. Mozaffari, P., Baird, Z. S., Listak, M., Oja, V. Vapor pressures of narrow gasoline fractions of oil from industrial retorting of Kukersite oil shale. Oil Shale, 2020, 37(4), 288–303.
https://doi.org/10.3176/oil.2020.4.03

23. Siitsman, C., Oja, V. Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts. Thermochim. Acta, 2015, 622, 31−37.
https://doi.org/10.1016/j.tca.2015.04.011

24. Oja, V. Examination of molecular weight distributions of primary pyrolysis oils from three different oil shales via direct pyrolysis Field Ionization Spectrometry. Fuel, 2015, 159, 759−765.
https://doi.org/10.1016/j.fuel.2015.07.041

25. Oja, V. Is it time to improve the status of oil shale science? Oil Shale, 2007, 24(2), 97‒99.

26. ASTM D86. Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure. ASTM International, West Conshohocken, PA, USA, 2012.

27. Rannaveski, R., Järvik, O., Oja, V. A new method for determining average boiling points of oils using a thermogravimetric analyser. J. Therm. Anal. Calorim., 2016, 126, 1679–1688.
https://doi.org/10.1007/s10973-016-5612-6

28. Rannaveski, R., Listak, M., Oja, V. ASTM D86 distillation in the context of average boiling points as thermodynamic property of narrow boiling range oil fractions. Oil Shale, 2018, 35(3), 254‒264.
https://doi.org/10.3176/oil.2018.3.05

29. Rannaveski, R., Oja, V. A new thermogravimetric application for determination of vapour pressure curve corresponding to average boiling points of oil fractions with narrow boiling ranges. Thermochim. Acta, 2020, 683, 178468.
https://doi.org/10.1016/j.tca.2019.178468

30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 2011, 12, 2825–2830.

31. Smits, G. F., Jordaan, E. M. Improved SVM regression using mixtures of kernels. In: Neural Networks, IJCNN’02., 2002, 2785–2790.

32. Storn, R., Price, K. Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim.,1997, 11, 341–359.
https://doi.org/10.1023/A:1008202821328

33. Jones, E., Oliphant, T., Peterson, P. SciPy: Open Source Scientific Tools for Python, 2001. http://www.scipy.org

34. Bertie, J. E., Zhang, S. L., Keefe, C. D. Measurement and use of absolute infrared absorption intensities of neat liquids. Vib. Spectrosc., 1995, 8(2), 215–229.
https://doi.org/10.1016/0924-2031(94)00038-I

35. Bertie, J. E., Lan, Z. An accurate modified Kramers–Kronig transformation from reflectance to phase shift on attenuated total reflection. J. Chem. Phys., 1996, 105(19), 8502‒8514.
https://doi.org/10.1063/1.472635

36. Oja, V. Characterization of tars from Estonian Kukersite oil shale based on their volatility. J. Anal. Appl. Pyrolysis, 2005, 74(1‒2), 55‒60.
https://doi.org/10.1016/j.jaap.2004.11.032

37. Moro, M. K., Neto, A. C., Lacerda, V., Romão, W., Chinelatto, L. S., Castro, E. V. R., Filgueiras, P. R. FTIR, 1H and 13C NMR data fusion to predict crude oils properties. Fuel, 2020, 263, 116721.
https://doi.org/10.1016/j.fuel.2019.116721

Back to Issue