ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Major, trace and rare earth element geochemistry of coal and oil shale in the Yuqia area, Middle Jurassic Shimengou Formation, northern Qaidam Basin; pp. 1–31
PDF | https://doi.org/10.3176/oil.2020.1.01

Authors
Yueyue Bai, Qingtian Lv, Zhaojun Liu, Pingchang Sun, Yinbo Xu, Jingyao Meng, Qingtao Meng, Wenquan Xie, Junxian Wang, Kebing Wang
Abstract

 

Coal and oil shale in the Middle Jurassic Shimengou Formation of the northern Qaidam Basin (China) have been characterized and compared using total organic carbon (TOC) content, oil yield, and proximate as well as major, trace and rare earth element (REE) and X-ray powder diffraction (XRD) analyses.
The results show that coal is represented by lignite and bituminous coal and oil shale is of medium quality. In both coal and oil shale, Si, Al, K, Ti and Na originate from a mixed clastic sedimentary component comprised of clay minerals, quartz and feldspars. In coal, rare earth elements (REEs) are related to phosphate minerals, whereas those in oil shale have inorganic affinities and are mainly associated with clay minerals and quartz. REEs in coal and oil shale are of terrigenous origin. Both coal and oil shale in the Yuqia area are possibly the products of source rocks that have experienced moderate chemical weathering during a warm and humid climate, and they have similar source rocks of felsic volcanic and sedimentary rocks.

 

References

 

1.   Wang, P. L., Li, Z. X., Lv, D. W., Wang, Z. F., Liu, H. Y., Wang, D. D., Feng, T. T. Analysis on palaeoclimate and metallogenic materials of typical basins under co-occurring circumstances of coal and oil shale. Coal Geology of China, 2013, 25(12), 8‒11 (in Chinese).

2.     Bai, Y. Y., Liu, Z. J., Sun, P. C., Hu, X. F., Zhao, H. Q. Rare earth and -major -element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China. J. Asian Earth Sci., 2015, 97(Part A), 89‒101.
https://doi.org/10.1016/j.jseaes.2014.10.008

3.     Xu, S. C., Liu, Z. J., Dong, Q. S., Liu, S. Y., Liu, R., Meng, Q. T. Eocene -sedimentary evolution and its control over coal & oil shale development in -Fushun Coalfield. Journal of China University of Petroleum, 2012, 36(2), 45‒52 (in Chinese).

4.     Bai, Y. L., Ma, L., Wu, W. J., Ma, Y. H. Geological characteristics and resource potential of oil shale in Ordos basin. Geology in China, 2009, 36(5), 1123‒1137 (in Chinese).

5.     Wang, B. S., Yu, J. F., Sun, Y. Z., Li, M. Y. Analysis on peat swamp types from Huangxian Tertiary brown coal and oil shale bearing basin. Coal Geology & Exploration, 2001, 29(5), 1‒3 (in Chinese).

6.     Gibling, M. R., Srisuk, S., Ulkakimaphan, Y. Oil shale and coal in intermontane basins of Thailand. AAPG Bull., 1985, 69(5), 760‒766.
https://doi.org/10.1306/AD462803-16F7-11D7-8645000102C1865D

7.     Xu, S. C., Liu, Z. J., Dong, Q. S., Chen, H. J., Liu, R. Deposition and sedimentary evolution of coal, oil shale and evaporite-bearing strata in terrestrial basins. Journal of Jilin University (Earth Science Edition), 2012, 42(2), 296‒303 (in Chinese).

8.     Sun, P. C., Sachsenhofer, R. F., Liu, Z. J., Strobl, S. A. I., Meng, Q. T., Liu, R., Zhen, Z. Organic matter accumulation in the oil shale- and coal-bearing Huadian Basin (Eocene; NE China). Int. J. Coal Geol., 2013, 105, 1‒15.
https://doi.org/10.1016/j.coal.2012.11.009

9.     Ward, C. R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol., 2000, 50(1‒4), 135‒168.
https://doi.org/10.1016/S0166-5162(02)00117-9

10.   Gürdal, G. Geochemistry of trace elements in Çan coal (Miocene), Çanakkale, Turkey. Int. J. Coal Geol., 2008, 74(1), 28‒40.
https://doi.org/10.1016/j.coal.2007.09.004

11.   Finkelman, R. B. The use of modes of occurrence information to predict the -removal of the hazardous air pollutants prior to combustion. J. Coal Qual., 1993, 12(4), 132–134.

12.   Finkelman, R. B. Modes of occurrence of environmentally-sensitive trace elements of coal. In: Environmental Aspects of Trace Elements in Coal (Swaine, D. J., Goodarzi, F., eds.). Kluwer Academic Publishers, the Netherlands, 1995, 24–50.
https://doi.org/10.1007/978-94-015-8496-8_3

13.   Swaine, D. J. Why trace elements are important. Fuel Process. Technol., 2000, 6566, 21–33.
https://doi.org/10.1016/S0378-3820(99)00073-9

14.   Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., Sheng, C. Status of trace element emission in a coal combustion process: a review. Fuel Process. Technol., 2004, 85(2–3), 215–237.
https://doi.org/10.1016/S0378-3820(03)00174-7

15.   Li, Z. S., Ward, C. R., Gurba, L. W. Occurrence of non-mineral inorganic elements in macerals of low-rank coals. Int. J. Coal Geol., 2010, 81(4), 242‒250.
https://doi.org/10.1016/j.coal.2009.02.004

16.   Dai, S. F., Liu, J. J., Ward, C. R., Hower, J. C., Xie, P. P., Jiang, Y. F., Hood, M. M., O’Keefe, J. M. K., Song, H. Petrological, geochemical, and -mineralogical compositions of the low-Ge coals from the Shengli coalfield, -China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev., 2015, 71, 318‒349.
https://doi.org/10.1016/j.oregeorev.2015.06.013

17.   Seredin, V. V., Dai, S. F. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol., 2012, 94, 67‒93.
https://doi.org/10.1016/j.coal.2011.11.001

18.   Dai, S. F., Graham, I. T., Ward, C. R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol., 2016, 159, 82–95.
https://doi.org/10.1016/j.coal.2016.04.005

19.   Bhatia, M. R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sediment. Geol., 1985, 45(1–2), 97‒113.
https://doi.org/10.1016/0037-0738(85)90025-9

20.   Wignall, P. B., Myers, K. J. Interpreting benthic oxygen levels in mudrocks: A new approach. Geology, 1988, 16(5), 452‒455.
https://doi.org/10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2

21.   Jones, B., Manning, D. A. C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., 1994, 111(1‒4), 111‒129.
https://doi.org/10.1016/0009-2541(94)90085-X

22.   McLennan, S. M. Relationships between the trace element composition of -sedimentary rocks and upper continental crust. Geochem. Geophy. Geosy., 2001, 2(4), Paper number 20000GC000109.
https://doi.org/10.1029/2000GC000109

23.   Tanaka, K., Akagawa, F., Yamamoto, K., Tani, Y., Kawabe, I., Kawai, T. Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the Last Glacial/Interglacial transition. Quaternary Sci. Rev., 2007, 26(9‒10), 1362‒1368.
https://doi.org/10.1016/j.quascirev.2007.02.004

24.   Yue, T. X. Middle Jurassic series coal-bearing strata characteristic analysis in Lenghu-Iqe area, Qinghai province. Coal Geology of China, 2011, 23(12), 18‒20 (in Chinese).

25.   Chen, L. The Study of Sedimentary Characteristics and Accumulation of Iqe Coalfield in Qinghai Province. Master Thesis, Xi’an University of Science and Technology, 2013 (in Chinese).

26.   Zhao, P. A study on physical property of oil shale on north margin of Qaidam basin, Qinghai province. Coal Geology of China, 2011, 23(12), 39‒41 (in Chinese).

27.   Ma, X. M., Hao, H. Y., Ma, F., Duan, G. L., Cheng, Y. H. Developmental value of oil shale in the 7th Member of Middle Jurassic in Yuqia Area, Qaidam -Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(3), 52‒59.

28.   Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L., Gan, S. C. Oil Shale in China. Petroleum Industry Press, 2008, 14‒28 (in Chinese with English abstract).

29.   GB/T 19145-2003. Determination of Total Organic Carbon in Sedimentary Rock, 2003 (in Chinese).

30.   ASTM D3177-02. Standard Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA, 2007.

31.   SH/T 0508-92. The Test Method for Oil Yield from Oil Shale – The Method of Low Temperature Carbonization, 1992 (in Chinese).

32.   ASTM D3173-11. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA, 2011.

33.   ASTM D3175-11. Standard Test Method for Volatile Matter in the Analysis -Sample of Coal and Coke. ASTM International, West Conshohocken, PA, 2011.

34.   ASTM D3174-11. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International, West Conshohocken, PA, 2011.

35.   ASTM D5865-13. Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International, West Conshohocken, PA, 2013.

36.   Kimura, T. Relationships between inorganic elements and minerals in coals from the Ashibetsu district, Ishikari coal field, Japan. Fuel Process. Technol., 1998, 56(1–2), 1‒19.
https://doi.org/10.1016/S0378-3820(97)00089-1

37.   Ward, C. R., Spears, D. A., Booth, C. A., Staton, I., Gurba, L. W. Mineral matter and trace elements in coals of the Gunnedah Basin, New South Wales, Australia. Int. J. Coal Geol., 1999, 40(4), 281–308.
https://doi.org/10.1016/S0166-5162(99)00006-3

38.   Ward, C. R., Taylor, J. C., Matulis, C. E., Dale, L. S. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction. Int. J. Coal Geol., 2001, 46(2–4), 67–82.
https://doi.org/10.1016/S0166-5162(01)00014-3

39.   Ruan, C. D., Ward, C. R. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods. Appl. Clay Sci., 2002, 21(5–6), 227–240.
https://doi.org/10.1016/S0169-1317(01)00103-X

40.   GB/T 5751-2009. Chinese Coal Classification. China national standardization management committee, 2009.

41.   Dai, S., Ren, D., Chou, C. L., Finkelman, R. B., Seredin, V. V., Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol., 2012, 94, 3–21.
https://doi.org/10.1016/j.coal.2011.02.003

42.   Finkelman, R. B. Trace and minor elements in coal. In: Organic Geochemistry (Engel, M. H., Macko, S. A., eds.). Plenum Press, New York, NY, 1993, 593–607.
https://doi.org/10.1007/978-1-4615-2890-6_28

43.   Ketris, M. P., Yudovich, Ya. E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol., 2009, 78(2), 135–148.
https://doi.org/10.1016/j.coal.2009.01.002

44.   Taylor, S. R., McLennan, S. M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Science Press, Beijing, 1985.

45.   Boynton, W. V. Cosmochemistry of the rare earth elements: meteorite studies. In: Rare Earth Element Geochemistry (Henderson, P., ed.), Elsevier, 1983, 63‒114.
https://doi.org/10.1016/B978-0-444-42148-7.50008-3

46.   Fu, X., Wang, J., Zeng, Y., Tan, F., Feng, X. Trace elements in marine oil shale from the Changshe Mountain area, northern Tibet, China. Energ. Source. Part A, 2012, 34(24), 2296‒2306.
https://doi.org/10.1080/15567036.2010.499418

47.   Patterson, J. H., Ramsden, A. R., Dale, L. S., Fardy, J. J. Geochemistry and -mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chem. Geol., 1986, 55(1–2), 1–16.
https://doi.org/10.1016/0009-2541(86)90123-3

48.   Wang, Z. G., Yu, X. Y., Zhao, Z. H. The Geochemistry of Rare Earth Elements. Science Press, Beijing, 1989, 73‒150 (in Chinese).

49.   Hu, X. F., Liu, Z. J., Liu, R., Sun, P. C., Xu, S. C., Meng, Q. T., Liu, S. Y. Clay mineral and inorganic geochemical characteristics of Eocene Huadian formation in Huadian basin and their paleoenvironment implications. Journal of China Coal Society., 2012, 37(3), 416‒423 (in Chinese).

50.   Liu, R., Liu, Z. J., Guo, W., Chen, H. J., Hu, X. F., Zhou, R. J. Rare earth element characteristics of Bagemaode oil shale, Inner Mongolia, China. Geochimica, 2010, 39(4), 364–370 (in Chinese).

51.   Mukhopadhyay, P. K., Goodarzi, F., Crandlemire, A. L., Gillis, K. S., MacNeil, D. J.,Smith, W. D. Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton Basins, Nova Scotia, Eastern Canada. Int. J. Coal Geol., 1998, 37(1–2), 113‒141.
https://doi.org/10.1016/S0166-5162(98)00020-2

52.   Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China. Int. J. Coal Geol., 2010, 81(3), 191‒199.
https://doi.org/10.1016/j.coal.2009.12.006

53.   Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., He, J. L. Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, -China. Geochemistry, 2011, 71(1), 21‒30.
https://doi.org/10.1016/j.chemer.2010.07.003

54.   Dorsey, A. E., Kopp, O. C. Distribution of elements and minerals between a coal and its overlying sedimentary rocks in a limnic environment. Int. J. Coal Geol., 1985, 5(3), 261‒274.
https://doi.org/10.1016/0166-5162(85)90028-X

55.   Glick, D. C., Davis, A. Variability in the inorganic element content of U.S. coals including results of cluster analysis. Org. Geochem., 1987, 11(5), 331‒342.
https://doi.org/10.1016/0146-6380(87)90066-0

56.   Asuen, G. O. Assessment of major and minor elements in the Northumberland Coalfield, England. Int. J. Coal Geol., 1987, 9(2), 171‒186.
https://doi.org/10.1016/0166-5162(87)90044-9

57.   Finkelman, R. B. Determination of trace element sites in the Waynesburg coal by SEM analysis of accessory minerals. Scan. Electron Micros., 1978, 1, 143‒148.

58.   Finkelman, R. B. Modes of occurrence of trace elements and minerals in coal. US Geol. Survey Open–File Rep., 1982, 221‒225.
https://doi.org/10.3133/ofr8199

59.   Finkelman, R. B., Stanton, R. W. Fuel, 1978, 57(12), 763‒768.
https://doi.org/10.1016/0016-2361(78)90135-7

60.   Shao, L. Y., Jones, T., Gayer, R., Dai, S. F., Li, S. S., Jiang, Y. F., Zhang, P. F. Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measure in the Heshan Coalfield, southern China. Int. J. Coal Geol., 2003, 55(1), 1–26.
https://doi.org/10.1016/S0166-5162(03)00031-4

61.   Murray, R. W., Bruchholtz ten Brink, M. R., Jones, D. L., Gerlach, D. C., Russ, G. P. III. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18(3), 268‒271.
https://doi.org/10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2

62.   Shi, J. A., Guo, X. L., Wang, Z., Yan, N. Z., Wang, J. X. Geochemistry of REE in QH1 sediments of Qinghai Lake since Late Holocene and its paleoclimatic significance. Journal of Lake Sciences., 2003, 15(1), 28‒34 (in Chinese).
https://doi.org/10.18307/2003.0104

63.   Chen, L., Liu, C. L., Zhuang, C., Che, X. G., Wu, J. Rare earth element records of the lower Paleogene sediments in the Sanshui Basin and their paleoclimate implications. Acta Sedimentologica Sinica, 2009, 27(6), 1155‒1162.

64.   Eskenazy, G. M. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. Int. J. Coal Geol., 1987, 7(3), 301‒314.
https://doi.org/10.1016/0166-5162(87)90041-3

65.   Birk, D., White, J. C. Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: Element sites, distribution, mineralogy. Int. J. Coal Geol., 1991, 19(1–4), 219–251.
https://doi.org/10.1016/0166-5162(91)90022-B

66.   Nesbitt, H. W., Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature.,1982, 299, 715‒717.
https://doi.org/10.1038/299715a0

67.   Bock, B., McLennan, S. M., Hanson, G. N. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the -Taconian Orogeny in New England. Sedimentology, 1998, 45(4), 635‒655.
https://doi.org/10.1046/j.1365-3091.1998.00168.x

68.   McLennan, S. M., Hemming, S., McDaniel, D. K., Hanson, G. N. Geochemical approaches to sedimentation, provenance, and tectonics. In: Processes Controlling the Composition of Clastic Sediments (Johnsson, M. J., Basu, A., eds.), Geological Society of America Special Papers, 1993, 284, 21‒40.
https://doi.org/10.1130/SPE284-p21

69.   Nesbitt, H. W., Young, G. M., McLennan, S. M., Keays, R. R. Effects of -chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol., 1996, 104(5), 525‒542.
https://doi.org/10.1086/629850

70.   Selvaraj, K., Chen, C. T. A. Moderate chemical weathering of subtropical -Taiwan: constraints from solid-phase geochemistry of sediments and sedimentary rocks. J. Geol., 2006, 114(1), 101‒116.
https://doi.org/10.1086/498102

71.   Nesbitt, H. W., Young, G. M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Ac., 1984, 48(7), 1523‒1534.
https://doi.org/10.1016/0016-7037(84)90408-3

72.   Nath, B. N., Kunzendorf, H., Plüger, W. L. Influence of provenance, weathering, and sedimentary processes on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad Lake and the adjoining continental shelf, southwest coast of India. J. Sediment. Res., 2000, 70, 1081‒1094.
https://doi.org/10.1306/100899701081

73.   Kasanzu, C., Maboko, M. A., Manya, S. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering. Precambrian Res., 2008, 164(3–4), 201‒213.
https://doi.org/10.1016/j.precamres.2008.04.007

74.   Lambeck, A., Huston, D., Maidment, D., Southgate, P. Sedimentary geochemist-ry, geochronology and sequence stratigraphy as tools to typecast stratigraphic units and constrain basin evolution in the gold mineralized -Palaeoproterozoic -Tanami Region, Northern Australia. Precambrian Res., 2008, 166(1‒4), 185‒203.
https://doi.org/10.1016/j.precamres.2007.10.012

75.   Wronkiewicz, D. J., Condie, K. C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochim. Cosmochim. Ac., 1987, 51(9), 2401‒2416.
https://doi.org/10.1016/0016-7037(87)90293-6

76.   Long, X., Sun, M., Yuan, C., Xiao, W., Cai, K. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sediment. Geol., 2008, 208(3–4), 88‒100.
https://doi.org/10.1016/j.sedgeo.2008.05.002

77.   Floyd, P. A., Leveridge, B. E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. London, 1987, 144(4), 531‒542.
https://doi.org/10.1144/gsjgs.144.4.0531

78.   Allegre, C. J., Minster, J. F. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sc. Lett., 1978, 38(1), 1‒25.
https://doi.org/10.1016/0012-821X(78)90123-1

79.   Asiedu, D. K., Suzuki, S., Nogami, K., Shibata, T. Geochemistry of Lower -Cretaceous sediments, inner zone of southwest Japan: Constraints on provenance and tectonic environment. Geochem. J., 2000, 34(2), 155‒173.
https://doi.org/10.2343/geochemj.34.155

80.   Roddaz, M., Viers, J., Brusset, S., Baby, P., Boucayrand, C., Herail, G. Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem. Geol., 2006, 226(1–2), 31‒65.
https://doi.org/10.1016/j.chemgeo.2005.08.010

81.   Dai, S. F., Yang, J. Y., Ward, C. R., Hower, J. C., Liu, H. D., Garrison, T. M., French, D., O’Keefe, J. M. K. Geochemical and mineralogical evidence for a coal–hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev., 2015, 70, 1‒30.
https://doi.org/10.1016/j.oregeorev.2015.03.010

82.   Göb, S., Loges, A., Nolde, N., Bau, M., Jacob, D. E., Markl, G. Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water-rock interaction. Appl. Geochem., 2013, 33, 127‒152.
https://doi.org/10.1016/j.apgeochem.2013.02.006

83.   Leybourne, M. I., Goodfellow, W. D., Boyle, D. R., Hall, G. M. Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn-Pb massive sulphide deposits. Appl. Geochem., 2000, 15(6), 695‒723.
https://doi.org/10.1016/S0883-2927(99)00096-7

84.   Yossifova, M. G., Eskenazy, G. M., Valčeva, S. P. Petrology, mineralogy, and geochemistry of submarine coals and petrified forest in the Sozopol Bay, -Bulgaria. Int. J. Coal Geol., 2011, 87(3‒4), 212‒225.
https://doi.org/10.1016/j.coal.2011.06.013

85.   Aubert, D., Stille, P., Probst, A. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim. Cosmochim. Ac., 2001, 65(3), 387–406.
https://doi.org/10.1016/S0016-7037(00)00546-9

 

Back to Issue