ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Oil shale pyrolysis products and the fate of sulfur; pp. 51–69
PDF | https://doi.org/10.3176/oil.2020.1.03

Authors
Birgit Maaten, Oliver Järvik, Olga Pihl, Alar Konist, Andres Siirde
Abstract

Oil shale (OS) is a solid hydrogen rich fossil fuel whose organic part can, under appropriate conditions, be turned into liquid fuel. The obtained shale oil is a mixture of a large number of organic compounds. However, the exact composition and yield of shale oil depend not only on the composition of oil shale, but also on the type of the reactor where oil was produced, as well as on process parameters like heating rate, pyrolysis temperature, pyrolysis time, and the size of oil shale particles fed to the reactor. In this paper, we present the results of the full chemical analysis of Estonian Ojamaa oil shale – characteristics of oil shale and shale oil and distribution of sulfur. The results of ultimate, proximate, major components and pyrolysis mass balance analyses are also presented and the characteristics of crude shale oil and oil fractions are provided. Special emphasis is put on the analysis of sulfur and its distribution between the pyrolysis products. Additionally, thermogravimetric analysis (TGA) results are provided.

 

References

 

1.              Pan, Y., Zhang, X., Liu, S., Yang, S., Ren, N. A review on technologies for oil shale surface retort. J. Chem. Soc. Pakistan, 2012, 34(6), 1331–1338.

2.              World Energy Council. World Energy Resources: 2013 Survey. Available: http://www.worldenergy.org/publications/entry/world-energy-resources-2013-survey.

3.              Estonian Oil Shale Industry Yearbook, 2018. Available: https://www.energia.ee/-/doc/8457332/ettevottest/investorile/pdf/Polevkivi_aastaraamat_2019_eng.pdf

4.              Konist, A., Pikkor, H., Neshumayev, D., Loo, L., Järvik, O., Siirde, A., Pihu, T.Co-combustion of coal and oil shale blends in circulating fluidized bed boilers. Oil Shale, 2019, 36(2S), 114–127.
https://doi.org/10.3176/oil.2019.2S.03

5.              Pihu, T., Konist, A., Neshumayev, D., Loo, L., Molodtsov, A., Valtsev, A. Full-scale tests on the co-firing of peat and oil shale in an oil shale fired circulating fluidized bed boiler. Oil Shale, 2017, 34(3), 250–262.
https://doi.org/10.3176/oil.2017.3.04

6.              Neshumayev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 2019, 36(2S), 99–113.
https://doi.org/10.3176/oil.2019.2S.02

7.              VKG Mines – Products and Services. Available: https://www.vkg.ee/keskkond

8.              Loo, L., Maaten, B., Siirde, A., Pihu, T., Konist, A. Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres. Fuel Process. Technol., 2015, 134, 317–324.
https://doi.org/10.1016/j.fuproc.2014.12.051

9.              Konist, A., Valtsev, A., Loo, L., Pihu, T., Liira, M., Kirsimäe, K. Influence of oxy-fuel combustion of Ca-rich oil shale fuel on carbonate stability and ash composition. Fuel, 2015, 139, 671–677.
https://doi.org/10.1016/j.fuel.2014.09.050

10.           Maaten, B., Loo, L., Konist, A., Nešumajev, D., Pihu, T., Külaots, I. Decomposition kinetics of American, Chinese and Estonian oil shales kerogen. Oil Shale, 2016, 33(2), 167–183.
https://doi.org/10.3176/oil.2016.2.05

11.           Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, Ameri-can and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11), 3300–3306.
https://doi.org/10.1016/j.fuel.2010.05.025

12.           Kaljuvee, T., Kuusik, R., Trikkel, A. SO2 binding into the solid phase during -thermooxidation of blends. Estonian oil shale semicoke. J. Therm. Anal. Calorim., 2003, 72(1), 393–404.

13.           Konist, A., Pihu, T., Neshumayev, D., Külaots, I. Low grade fuel – oil shale and biomass co-combustion in CFB boiler. Oil Shale, 2013, 30(2S), 294–304.
https://doi.org/10.3176/oil.2013.2S.09

14.           Lille, Ü. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale, 2003, 20(3), 253–263.

15.           ISO 647:2017. Brown coals and lignites Determination of the yields of tar, water, gas and coke residue by low temperature distillation.

16.           Gerasimov, G., Khaskhachikh, V., Potapov, O. Experimental study of kukersiteoil shale pyrolysis by solid heat carrier. Fuel Process. Technol., 2017, 158, 123–129.
https://doi.org/10.1016/j.fuproc.2016.12.016

17.           Maaten, B., Loo, L., Konist, A., Pihu, T., Siirde, A. Investigation of the evolution of sulphur during the thermal degradation of different oil shales. J. Anal. Appl. Pyrol., 2017, 128, 405–411.
https://doi.org/10.1016/j.jaap.2017.09.007

18.           Kaljuvee, T., Keelmann, M., Trikkel, A., Kuusik, R. Thermooxidative decomposition of oil shales. J. Therm. Anal. Calorim., 2011, 105(2), 395–403.
https://doi.org/10.1007/s10973-010-1033-0

19.           Hillier, J. L., Fletcher, T. H., Solum, M. S., Pugmire, R. Characterization of -macromolecular structure of pyrolysis products from a Colorado Green River oil shale. Ind. Eng. Chem. Res., 2013, 52(44), 15522–15532.
https://doi.org/10.1021/ie402070s

20.           Tiwari, P., Deo, M., Lin, C. L., Miller, J. D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 2013, 107, 547–554.
https://doi.org/10.1016/j.fuel.2013.01.006

21.           Bai, F., Sun, Y., Liu, Y., Li, Q., Guo, M. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energ. Convers. Manage., 2015, 97, 374–381.
https://doi.org/10.1016/j.enconman.2015.03.007

22.           Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl. Energ., 2000, 66(2), 113–133.
https://doi.org/10.1016/S0306-2619(99)00038-0

23.           Altun, N. E., Hicyilmaz, C., Hwang, J.-Y., Bacgi, A. S., Kök, M. V. Oil shales in the world and Turkey; reserves, current situation and future prospects: A review. Oil Shale, 2006, 23(3), 211–227.

24.           Oil Shale Petroleum Alternative (Qian, J., Yin, L., Eds. in Chief). China Petrochemical Press, Beijing, 2010.

25.           ISO 1171:2010. Solid mineral fuels Determination of ash.

26.           EVS-ISO 1928:2016. Solid mineral fuels. – Determination of gross calorific value by bomb calorimetric method and calculation of net calorific value.

27.           EVS-ISO 29541:2015. Solid mineral fuels Determination of total carbon, hydrogen and nitrogen content Instrumental method.

28.           EVS-EN 196-2:2013. Method of testing cement Part 2: Chemical analysis of cement.

29.           EVS 664:2017. Solid fuels: sulphur content. – Determination of total sulphur and its bonding forms.

30.           ISO 925:2019. Solid mineral fuels Determination of carbonate carbon content Gravimetric method.

31.           ISO 540:2008. Hard coal and coke Determination of ash fusibility.

32.           Lu, Y., Wang, Y., Xu, Y., Li, Y., Hao, W., Zhang, Y. Investigation of ash fusion characteristics and migration of sodium during co-combustion of Zhundong coal and oil shale. Appl. Therm. Eng., 2017, 121, 224–233.
https://doi.org/10.1016/j.applthermaleng.2017.04.062

33.           Konist, A., Pihu, T., Neshumayev, D., Siirde, A. Oil shale pulverized firing: boiler efficiency, ash balance and flue gas composition. Oil Shale, 2013, 30(1), 6–18.
https://doi.org/10.3176/oil.2013.1.02

34.           Liiv, S., Kaasik, M. Trace metals in mosses in the Estonian oil shale processing region. J. Atmos. Chem., 2004, 49(1–3), 563–578.
https://doi.org/10.1007/s10874-004-1266-z

35.           Elenurm, A., Oja, V., Tali, E., Tearo, E., Yanchilin, A. Thermal processing of dictyonema argillite and kukersite oil shale: Transformation and distribution of sulfur compounds in pilot-scale galoter process. Oil Shale, 2008, 25(3), 328–334.
https://doi.org/10.3176/oil.2008.3.04

36.           Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777.
https://doi.org/10.1016/j.energy.2006.05.001

37.           Järvik, O., Oja, V. Molecular weight distributions and average molecular weights of pyrolysis oils from oil shales: Literature data and measurements by size exclusion chromatography (SEC) and atmospheric solids analysis probe mass spectroscopy (ASAP MS) for oils from four different deposits. Energ. Fuel., 2017, 31(1), 328–339.
https://doi.org/10.1021/acs.energyfuels.6b02452

38.           Trikkel, A., Kuusik, R., Martins, A., Pihu, T., Stencel, J. M. Utilization of Estonian oil shale semicoke. Fuel Process. Technol., 2008, 89(8), 756–763.
https://doi.org/10.1016/j.fuproc.2008.01.010

39.           Huang, Y., Zhang, M., Lyu, J., Yang, H. Modeling study of combustion process of oil shale semicoke in a circulating fluidized bed boiler. Carbon Resour. Convers., 2018, 1(3), 273–278.
https://doi.org/10.1016/j.crcon.2018.11.003

40.           Saether, O., Banks, D., Kirso, U., Bityukova, L., Sorlie, J. E. The chemistry and mineralogy of waste from retorting and combustion of oil shale. Geol. Soc. London, Spec. Publ., 2004, 236(1), 263–284.
https://doi.org/10.1144/GSL.SP.2004.236.01.16

41.           Garcia-Labiano, F., Hampartsoumian, E., Williams, A. Determination of sulfur release and its kinetics in rapid pyrolysis of coal. Fuel, 1995, 74(7), 1072–1079.
https://doi.org/10.1016/0016-2361(95)00049-B

42.           Garcia, R., Moinelo, S. R., Lafferty, C. J., Snape, C. E. Pyrolytic desulfurization of some high-sulfur coals. Energ. Fuel., 1991, 5(4), 582–586.
https://doi.org/10.1021/ef00028a009

43.           Guo, Z., Fu, Z., Wang, S. Sulfur distribution in coke and sulfur removal during pyrolysis. Fuel Process. Technol., 2007, 88(10), 935–941.
https://doi.org/10.1016/j.fuproc.2007.05.003

44.           Ristic, N. D., Djokic, M. R., Konist, A., Van Geem, K. M., Marin, G. B. Quantitative compositional analysis of Estonian shale oil using comprehensive two dimensional gas chromatography. Fuel Process. Technol., 2017, 167, 241–249.
https://doi.org/10.1016/j.fuproc.2017.07.008

45.           Abu-Nameh, E. S. M, Al-Ayed, O. S., Jadallah, A. Determination of selected elements in shale oil liquid. Oil Shale, 2019, 36(2S), 179–187.
https://doi.org/10.3176/oil.2019.2S.08

46.           Akash, B. A., Jaber, J. O. Characterization of shale oil as compared to crude oil and some refined petroleum products. Energ. Source., 2003, 25(12), 1171–1182.
https://doi.org/10.1080/00908310390233612

47.           Cui, D., Wang, Q., Wang, Z. C., Liu, Q., Pan, S., Bai, J., Liu, B. Compositional analysis of heteroatom compounds in Huadian shale oil using various analytical techniques. Energ. Fuel., 2019, 33(2), 946–956.
https://doi.org/10.1021/acs.energyfuels.8b03889

48.           EVS-EN ISO 20846:2011. Petroleum products – Determination of sulfur content of automotive fuels Ultraviolet fluorescence method.

49.           Willey, C., Iwao, M., Castle, R. N., Lee, M. L. Determination of sulfur hetero-cycles in coal liquids and shale oils. Anal. Chem., 1981, 53(3), 400–407.
https://doi.org/10.1021/ac00226a006

50.           Chu, W., Cao, X., Schmidt-Rohr, K., Birdwell, J. E., Mao, J. Investigation into the effect of heteroatom content on kerogen structure using advanced 13C solid-state nuclear magnetic resonance spectroscopy. Energ. Fuel., 2019, 33(2), 645–653.
https://doi.org/10.1021/acs.energyfuels.8b01909

51.           Chu Van, T., Ramirez, J., Rainey, T., Ristovski, Z., Brown, R. J. Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions. Transp. Res. D., 2019, 70, 123–134.
https://doi.org/10.1016/j.trd.2019.04.001

52.          Pan, S., Wang, Q., Bai, J., Liu, H., Chi, M., Cui, D., Xu, F. Investigation of -behavior of sulfur in oil fractions during oil shale pyrolysis. Energ. Fuel., 2019.
https://doi.org/10.1021/acs.energyfuels.9b02406

 

Back to Issue