ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Solar pyrolysis of oil shale samples under different operating conditions; pp. 514–530
PDF | https://doi.org/10.3176/oil.2019.4.05

Authors
Malik I. Alamayreh, Jamal O. Jaber
Abstract

The main objective of this experimental work is to study oil shale pyrolysis by direct heating of solar energy, using a simple concentrated solar system, and a thermogravimetric analyzer (TGA). The tested sample was obtained from a local oil shale deposit, Ellujjun, in Jordan. The TGA test results confirmed that the involved reactions depended on final reactor temperature: the higher the temperature, the greater the weight loss in the sample. A series of experiments using a new design of fixed bed retort powered by solar energy were carried out to study the influence of various operating parameters such as environment inside the reactor and final temperature on the pyrolysis process. The magnitude of the total yield was mainly dependent on temperature and the medium inside the retort. The highest oil yield was witnessed when air was used as gas in the retort, while in subsequent experiments using kerosene the oil yield was much lower. However, this was almost nil in case of using water in the retort. This is the first research of its kind in the Middle East and North Africa (MENA) region, utilizing a solar parabolic dish reflector to heat up the reactor and is deemed to open the way in the future for more detailed research in the field of solar oil shale retorting and/or gasification.

References

1.         Department of Statistics. Annual Statistical Report – 2017. Amman, Jordan, 2018.

2.         Ministry of Energy and Mineral Resources. News Press of the Minister Concerning the Closure of Shell Oil Shale Project in Jordan. Madina Newspaper, 19 January 2016, Amman, Jordan (in Arabic).

3.         Jaber, J. O., Elkarmi, F., Alasis, E., Kostas, A. Employment of renewable energy in Jordan: Current status, SWOT and problem analysis. Renew. Sust. Energ. Rev., 2015, 49, 490‒499.
https://doi.org/10.1016/j.rser.2015.04.050

4.         Abu-Hamatteh, Z. S. H., Jaber, J., Besieso, M. S., Al-Jufout, S., Al-Azab, T. A., Al-Shawabkeh, A. F. Jordanian oil shale: a promising strategic source of -energy. In: Natural Resources, Economics, Management and Policy (White, J. R., Robinson, W. H., eds.), 1st ed. Nova Science Publishers, New York, 2008, 89‒129.

5.         Bsieso, M. S. Jordan’s experience in oil shale studies employing different technologies. Oil Shale, 2003, 20(3S), 360‒370.

6.         Al-Zoubi, M. Status Update of APCO Oil Shale Fired Power Plant. Paper presented in the 2nd Oil Shale Conference, Al-Balqa Applied University, Salt, -Jordan, October 9‒11, 2018.

7.         The Hashemite Kingdom of Jordan. National Electric Power Company. Annual Report – 2017. Amman, Jordan, 2018, 1‒84.

8.         Ramini, H. Jordan’s Oil Shale Potential and Development: Challenges and More Challenges. Paper presented in the 2nd Oil Shale Conference, Al-Balqa Applied University, Salt, Jordan, October 9‒11, 2018.

9.         Jaber, J. O., Sladek, T. A., Mernitz, S., Tarawneh, T. M. Future policies and -strategies for oil shale development in Jordan. Jordan Journal of Mechanical and Industrial Engineering (JJMIE), 2008, 2(1), 31‒44.

10.     Alali, J., Abu Salah, A., Yasin, S. M., Al Omari, W. Ministry of Energy and Mineral Resources, Mineral Status and Future Opportunity. Oil Shale. Amman, Jordan, 2015, 1‒23.

11.     Abu Rahmeh, T., Abbas, A., Jaber, J., Alawin, A. Repowering old thermal power station by integrating Concentrated Solar Power technology. Jordan Journal of Mechanical and Industrial Engineering (JJMIE), 2016, 10(2), 85‒98.

12.     Haddadin, R. A., Mizyed, F. A. Thermogravimetric analysis kinetics of Jordan oil shale. Ind. Eng. Chem. Proc. Des. Dev., 1974, 13, 332–336.
https://doi.org/10.1021/i260052a004

13.     Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil shales. Appl. Energ., 1999, 63(4), 269‒286.
https://doi.org/10.1016/S0306-2619(99)00033-1

14.     Jaber, J. O., Probert, S. D. Reaction kinetics of fluidised bed gasification of Jordanian oil shales. Int. J. Therm. Sci., 2000, 39(2), 295‒304.
https://doi.org/10.1016/S0035-3159(00)00247-6

15.     Jaber J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales. Energy, 1999, 24(9), 761‒781.
https://doi.org/10.1016/S0360-5442(99)00029-8

16.     Sladek, T., Jaber, J. O. Integrated Development of Renewable Energy and Oil Shale. Paper presented in the 3rd Jordan International Oil Shale Symposium, Movenpick Resort & Spa Dead Sea, Amman, Jordan, November 21‒22, 2016.

17.     Akash, B., Jaber, J. O. Characterization of shale oil as compared to crude oil and some refined petroleum products. Energ. Source., 2003, 25(12), 1171‒1182.
https://doi.org/10.1080/00908310390233612

18.     Jaber, J. O., Probert, S. D., Williams, P. T. Gaseous fuels derived from oil shale for heavy-duty gas turbines and combined cycle power generators. Appl. Energ., 1998, 60, 1‒20.
https://doi.org/10.1016/S0306-2619(98)00022-1

19.     Jaber, J. O. Gasification potential of Ellujjun oil shale. Energ. Convers. Manage., 2000, 41, 1615‒1624.
https://doi.org/10.1016/S0196-8904(00)00006-6

20.     Jaber, J. O., Probert, S. D., Williams, P. T., Tahat, M. Gasification potential and kinetics of Jordanian oil shales using CO2 as the reactant gas. Energ. Source., 2000, 22(6), 573‒585.
https://doi.org/10.1080/00908310050013785

21.     McCarthy, D. J., Close, R. C. A preliminary study of the gasification kinetics of the residue from retorting alignitic oil shale. Fuel, 1988, 67(8), 1083–1090.
https://doi.org/10.1016/0016-2361(88)90374-2

22.     Svensson, O. Technical Feasibility of Swedish Black Shale Gasification, PhD Thesis. Department of Chemical Engineering, Lund University, 1980.

23.     Lau, F. S., Rue, D. M., Punwani, D., Rex, Jr., R. C. Fluidized-Bed Gasification of an Eastern Oil Shale. Paper presented in the Eastern Oil Shale Symposium, Kentucky Energy Cabinet, Lexington, Kentucky, USA, November 18‒20, 1987.

24.     Van Tuyl, D. E., Thomson, W. J. Reaction kinetics of the gasification of Michigan Antrim oil shale char. Fuel, 1986, 65(1), 58–62.
https://doi.org/10.1016/0016-2361(86)90142-0

25.     Thomson, W. J., Sy, L. Y. Potassium catalyzed gasification of Kentucky oil shale char. Fuel, 1987, 66(2), 223–227.
https://doi.org/10.1016/0016-2361(87)90245-6

26.     Burnham, A. K. Reaction kinetics between CO2 and oil-shale residual carbon. 1. Effect of heating rate on reactivity. Fuel, 1979, 58(4), 285–291.
https://doi.org/10.1016/0016-2361(79)90138-8

27.     Burnham, A. K., Stubblefield, C. T., Campbell, J. H. Effects of gas environment on mineral reactions in Colorado oil shale. Fuel, 1980, 59(12), 871–877.
https://doi.org/10.1016/0016-2361(80)90037-X

28.     Li, S., Cheng, Y. Catalytic gasification of gas-coal char in CO2. Fuel, 1995, 74(3), 456–458.
https://doi.org/10.1016/0016-2361(95)93482-S

29.     Dror, Y., Marian, S., Levy, M. Pyrolysis/g.c. of oil shales and coal. Fuel, 1985, 64(3), 406–410.
https://doi.org/10.1016/0016-2361(85)90432-6

30.     Chen, S. G., Yang, R. T. Unified mechanism of alkali and alkaline earth catalysed gasification reactions of carbon by CO2 and H2O. Energ. Fuel., 1997, 11(2), 421–427.
https://doi.org/10.1021/ef960099o

31.     Dung, N. V. Pyrolysis behaviour of Australian oil shales in a fluidized bed reactor and in a material balance modified Fischer assay retort. Fuel, 1989, 68(12), 1570–1579.
https://doi.org/10.1016/0016-2361(89)90296-2

32.     Campbell, J. H., Koskinas, G. J., Gallegos, G., Gregg, M. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel, 1980, 59(10), 718–726.
https://doi.org/10.1016/0016-2361(80)90027-7

33.     Feng, R. J., Hatcher, W. J. Fluidised Bed Gasification of Devonian Shale. Paper presented in the Eastern Oil Shale Symposium, Kentucky Energy Cabinet, -Lexington, Kentucky, USA, November 18‒20, 1987.

34.     Pan, Y., Zhang, X., Liu, S., Yang, S., Ren, N. A review on technologies for oil shale surface retort. J. Chem. Soc. Pakistan, 2012, 34(6), 1331‒1338.

35.     Schmidt, J. An Overview of the ATP Technology to Date and for the Future. Paper presented in the 2nd Oil Shale Conference, Al-Balqa Applied University, Salt, Jordan, October 9‒11, 2018.

36.     Ingel, G., Levy, M., Gordon, J. M. Oil-shale gasification by concentrated sunlight: An open-loop solar chemical heat pipe. Energy, 1992, 17(12), 1189‒1197.
https://doi.org/10.1016/0360-5442(92)90008-N

37.     Jaber, J. O., Probert, S. D. Exploitation of Jordanian oil shales. Appl. Energ., 1997, 58(2‒3), 161‒175.
https://doi.org/10.1016/S0306-2619(97)00041-X

38.     Qi, H., Coplen, T. B., Geilmann, H., Brand, W. A., Böhlke, J. K. Two new organic reference materials for delta13C and delta15N measurements and a new value for the delta13C of NBS 22 oil. Rapid Commun. Mass Sp., 2003, 17(22), 2483‒2487.
https://doi.org/10.1002/rcm.1219

39.     Hijazi, H., Mokhiamar, O., Elsamni, O. Mechanical design of a low cost parabolic solar dish concentrator. Alex. Eng. J., 2016, 55(1), 1‒11.

40.     Jaber, J. O., Abu Rahma, T., Alaween, A., Kloub, N. Influence of operating conditions of surface retorting processes on CO2 emissions. Jordan Journal of Mechanical and Industrial Engineering (JJMIE), 2010, 4, 591‒596.
https://doi.org/10.1016/j.aej.2016.01.028

41.     Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions. Fuel Process. Technol., 2000, 63(1), 57‒70.
https://doi.org/10.1016/S0378-3820(99)00064-8

42.     Cengel, Y. A., Boles, MA. Thermodynamics: An Engineering Approach. 8th edition. McGraw-Hill Education, 2015.

43.     Jaber, J., Amri, A., Ibrahim, K. M. Experimental investigation of effects of oil shale composition on its calorific value and oil yield. Int. J. Oil, Gas Coal T., 2011, 4(4), 307‒321.
https://doi.org/10.1504/IJOGCT.2011.043714

Back to Issue