ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
CHEMICAL COMPOSITION OF THE MINERAL MATTER OF THE ATTARAT UM GHUDRAN OIL SHALE, CENTRAL JORDAN; pp. 18–30
PDF | doi: 10.3176/oil.2016.1.02

Authors
VÄINO PUURA, ALVAR SOESOO, MARGUS VOOLMA, SIGRID HADE, HARDI AOSAAR
Abstract

The concession area of the Jordan Oil Shale Energy Co (JOSE) is located in the southern border zone of the Attarat Um Ghudran deposit, next to the Wadi Maghara deposit, both consisting of marinite type oil shale (OS). These deposits of the Upper Cretaceous to Lower Paleogene Muwaqqar Chalk-Marl Formation form a huge north-southward elongated oil shale basin in Central Jordan, with resources over 55 billion tons. JOSE has drilled a regular grid of boreholes with a full coring of the up to 90 m thick OS seam and its lower and upper contact layers. Visually, the OS unit is a rather homogenous dark-colored (grey, black, brownish grey) succession of finely bedded (laminated) kerogen-bearing carbonate rocks that has been in earlier papers described as a uniform lithological unit. The aim of the geological and lithological studies of the JOSE exploration area was (i) to investigate the vertical variation of OS composition and, if present, to define layers within the OS unit, and (ii) to identify lithological varieties and chemical composition of OS present in different layers.
    On the basis of field evidence, downhole gamma-logging, chemical analyses and other criteria, an original detailed scheme of the layered structure of oil shale and barren rocks was introduced. A total of eight OS layers (indexed as A, B1, B2, C, D, E1, E2, E3) and at least four barren dolomitic limestone interlayers were distinguished. The present publication is dedicated to the chemical study of the layers and the total OS seam. A representative gapless collection of 632 conventional core samples from 12 cores serves as the base for the comparative study of the layers. Two main (SiO2, CaO) and two subordinate chemical (Al2O3 and P2O5) components of the mineral matter (MM), and loss on ignition (LOI 500 °C) approximately reflecting the content of organic matter (OM), are the basic variables dis­cussed. Contents of SiO2 and CaO always show negative correlation, whereas local enrichment with Al2O3 and P2O5 occurs in certain interbeds. OM content in samples has no strong correlation with mineral matter abundances. The eight distinguished OS layers comprise both those strongly enriched in CaO, or oppositely in SiO2. The layers differ in rate of internal heterogeneity reflected in variation of standard deviation values. With rare exceptions, the barren limestone interlayers are dolomitized, strongly enriched with MgO and depleted of CaO. The database on the distribution of mineral compounds and trace elements serves for the 3-D block modelling of the deposit composition. However, further data analysis is required for the understanding of lateral changes of the layers’ mineral composition, and geological and geochemical structure.

References

  1. Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward, A. P., Horbury, A. D., Simmons, M. D. Arabian Plate Sequence Strati­graphy. GeoArabia Special Publication 2. Gulf PetroLink, Manama, Bahrain, 2001, p. 372.

  2. Powell, H. J., Moh'd, K. B. Evolution of Cretaceous to Eocene alluvial and carbonate platform sequences in central and south Jordan, GeoArabia – Middle East Petroleum Geosciences, 2011, 16(4), 29–82.

  3. Abed, A. M., Amireh, B. S. Petrography and geochemistry of some Jordanian oil shales from North Jordan. J. Petrol. Geol.,1983, 5(3), 261–274.
http://dx.doi.org/10.1111/j.1747-5457.1983.tb00571.x

  4. Hamarneh, Y. Oil Shale Resources Development in Jordan. Natural Resources Authority, Hasemite Kingdom of Jordan, Amman, 1998.

  5. Hamarneh, Y., Alali, J., Sawaged, S. Oil Shale Resources Development in Jordan. Natural Resources Authority of Jordan (updated report), Amman, 2006.

  6. Alali, J. Jordan oil shale, availability, distribution, and investment opportunity. Int. Conf. on Oil Shale: “Recent Trends in Oil Shale“, Amman, Jordan 7–9 November 2006, Paper no. rtos-A 117.

  7. Dyni, J. R. Geology and Resources of Some World Oil-Shale Deposits. Scientific Investigations Report 2005-5294. U.S. Geological Survey, Reston, Virginia, 2006.

  8. Abed, A. M., Arouri, K. Characterization and genesis of oil shales from Jordan. Int. Conf. on Oil Shale: “Recent Trends in Oil Shale“, Amman, Jordan 7–9 November 2006, Paper no. rtos-A121.

  9. Abed, A. M., Fakhouri, K. On the chemical variability of phosphatic particles from Jordanian phosphorite deposits. Chem. Geol., 1996, 131(1–4), 1–13.
http://dx.doi.org/10.1016/0009-2541(96)00011-3

10. Hutton, A. C. Petrographic classification of oil shales. Int. J. Coal Geol., 1987, 8(3), 203–231.
http://dx.doi.org/10.1016/0166-5162(87)90032-2

11. DeWolfe, C., Horne, E. J., Morgan, C. A. Geology and Geochemistry of the Al Lajjun Oil Shale Deposit, Central Jordan, AAPG Conference and Exhibition, Calgary, Alberta, Canada, September 12–15, 2010.

12. Puura, V., Martins, A., Baalbaki, M. Kh., Al-Khatib, K. Occurrence of oil shales in the south of Syrian Arab Republic. Oil Shale, 1984, 1(4), 333–340.

13. Hufnagel, H. Die Ölschiefer Jordaniens. In: Geologisches Jahrbuch, Reihe A, Heft 75, Hannover, 1984, 295–312 (in German).

14. Bauert, H., Kattai, V. Kukersite oil shale. In: Geology and Mineral Resources of Estonia (Raukas, A., Teedumäe, A., eds.). Estonian Academy Publishers, Tallinn, 1997, 313–327.

15. Petersell, V. Dictyonema argillite. In: Geology and Mineral Resources of Estonia (Raukas, A., Teedumäe, A., eds.). Estonian Academy Publishers, Tallinn, 1997, 327–331.

16. Voolma, M., Soesoo, A., Hade, S., Hints, R., Kallaste, T. Geochemical hetero­geneity of Estonian graptolite argillite. Oil Shale, 2013, 30(3), 377–401.
http://dx.doi.org/10.3176/oil.2013.3.02

17. Hade, S., Soesoo, A. Estonian graptolite argillites revisited: a future resource? Oil Shale, 2014, 31(1), 4–18.
http://dx.doi.org/10.3176/oil.2014.1.02

18. Soesoo, A., Hade, S. Black shales of Estonia: moving towards a Fenno­scandian-Baltoscandian database. Transactions of Karelian Research Centre of Russian Academy of Sciences: Precambrian Geology, 2014, 1, 103–114.

19. Enefit Outotec Technology. 2015. www.enefit.com/en/eot (accessed 15 November 2015).

20. Puura, V., Bauert, H., Männil, R. The Conditions of Kukersite Deposition. In: Proc. Int. Conf. Oil Shale and Shale Oil, Beijing, China, May 16–19, 1988. Chemical Industry Press, Beijing, 1988, 42–51.

21. Kattai, V., Puura, V. Commercial Zonation of the Estonian Oil Shale Deposit. In: Proc. Int. Conf. Oil Shale and Shale Oil, Beijing, China, May 16–19, 1988. Chemical Industry Press, Beijing, 1988, 51–60.

22. Kiipli, T., Batchelor, R. A., Bernal, J. P., Cowing, Ch., Hagel-Brunnström, M., Ingham, M. N., Johnson, D., Kivisilla, J., Knaack, Ch., Kump, P., Lozano, R., Michiels, D., Orlova, K., Pirrus, E., Rousseau, R. M., Ruzicka, J., Sand­ström, H., Willis, J. P. Seven sedimentary rock reference samples from Estonia. Oil Shale, 2000, 17(3), 215–223.

Back to Issue