ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
COMPOSITION AND PROPERTIES OF OIL SHALE ASH CONCRETE; pp. 147–160
PDF | doi: 10.3176/oil.2014.2.05

Authors
LEMBI-MERIKE RAADO, TIINA HAIN, ENELI LIISMA, REIN KUUSIK
Abstract

Oil shale ash (OSA) as a binder has air, pozzolanic or latent hydraulic properties depending on the combustion temperature and type of ash collection equipment. This paper focuses on the use of OSA as the main binder for low strength concrete. Impact of hardening conditions on the strength development and soundness of various concrete mixes made with two main types of OSA and their mixes was tested. Crushed limestone was used as aggregate. Concrete mixes were designed at an OSA:aggregate ratio of 3:1 and 1:1, using fresh concretes with the same workability. The results revealed differences in the strength development, 28-day compressive strength and durability properties between hardened concretes made with various OSA binders. The compressive strength of concretes made with various OSA was tested in different curing conditions. The durability properties of OSA based hardened concrete such as water absorption and resistance were tested. The results of expansion and water resistance tests indicated that by increasing the content of CFB ash in OSA binders, water resistance was improved and expansion diminished.

References

  1. Ots, A. Oil Shale Fuel Combustion. Tallinn, 2006.

  2. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, 29(4), 376–403.
http://dx.doi.org/10.3176/oil.2012.4.08

  3. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, 93(1), 172–180.
http://dx.doi.org/10.1016/j.fuel.2011.08.050

  4. Kikas, W. Composition and binder properties of Estonian kukersite oil shale ash. ZKG International, 1997, 50(2), 112–126.

  5. Kikas, W., Ojaste, K., Raado, L. Cause and mode of action of the alkali-silica reaction in concretes made with Estonian Portland oil shale cement. ZKG International, 1999, 52(2), 106–111. http://www.ttu.ee/public/r/ raamatukogu/Infoallikad/TTU_Publikatsioonid/1999.pdf

  6. Raado, L.-M., Nurm, V. Properties of fluidized bed burnt oil shale ashes. In: Proc. of European Symposium on Service Life and Serviceability of Concrete Structures ESCS-2006. Espoo, Finland, 2006, 200–205.

  7. Raado, L.-M., Nurm, V. Burnt oil shale - main constituent of Portland cement. In: Proceedings of CESB 07 Prague, 2007, Vol. 2, 746–751.

  8. Raado, L.-M., Tuisk, T., Rosenberg, M., Hain, T. Durability behavior of Portland burnt oil shale cement concrete. Oil Shale, 2011, 28(4), 507–515.
http://dx.doi.org/10.3176/oil.2011.4.04

  9. Neville, A. M. Properties of Concrete. John Wiley & Sons, Inc., New York, 1995.

10. Karu, V., Valgma, I., Kolats, M. Mine water as a potential source of energy from underground mined areas in Estonian oil shale deposit. Oil Shale, 2013, 30(2S), 336–362.
http://dx.doi.org/10.3176/oil.2013.2S.12

11. EVS-EN 1744-1:2010+A1:2012. Tests for chemical properties of aggregates.

12. EVS-EN 450-1:2005+A1:2007. Fly ash for concrete. Part 1. Definitions, specifications and conformity criteria.

13. EVS 636:2002. Burnt oil shale for production Portland burnt shale cement, Portland composite cement and masonry cement (in Estonian).

14. EVS-EN 480-1:2006+A1:2010. Admixtures for concrete, mortar and grout. Test methods.

15. EVS-EN 12390-1:2012. Testing hardened concrete.

16. Hearn, N., Hooton, R. D., Nokken, M. R. Pore structure, permeability, and penetration resistance characteristics of concrete. In: Significance of Tests and Properties of Concrete and Concrete-Making Materials (Lamond, J. F., Pielert, J. H., eds.). ASTM International, West Conshohocken, PA, 2006, 238–250.
http://dx.doi.org/10.1520/STP37741S

17. Wang, L., Ueda, T. Mesoscale modeling of water penetration into concrete by capillary absorption. Ocean Eng., 2011, 38(4), 519–528.
http://dx.doi.org/10.1016/j.oceaneng.2010.12.019

Back to Issue