ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY USING OIL SHALE ASH; pp. 161–173
PDF | doi: 10.3176/oil.2014.2.06

Authors
ZENGYING ZHAO, JIANGYAN YUAN, MENG FU, LA SU, ZHAOHUI LI
Abstract

Oil shale ash (OSA) is a solid waste from the production process of shale oil. The large quantity of OSA generated in China yearly has led to serious, difficult-to-solve environmental problems. With a view to reducing OSA-induced environmental pressure, in this study, removal of methylene blue (MB) from aqueous solution by using OSA was investigated at different physical and chemical parameters, such as pH, temperature, initial MB concentration, and contact time. The experimental results showed that both the Langmuir and Freundlich models fitted the MB adsorption data well with an adsorption capacity as high as 250 mg/g. Removal of MB by OSA was relatively fast and equilibrium could be achieved in 2 h. Adsorption of MB by OSA was an endothermic reaction, and the change of free energy after MB adsorption indicated physical adsorption in nature. The results suggest a new potential utilization of OSA for the removal of color dye from wastewater.

References

  1.  Paat, A., Traksmaa, T. Investigation of the mineral composition of Estonian oil-shale ash using X-Ray diffractometry. Oil Shale, 2002, 19(4), 373–386.

  2. Xu, Y.-M., He, D.-M., Wang, D.-M., Lian, Y.-H., Guan, J., Zhang, Q.-M. Influence of calcination temperature on leaching rate of aluminum and iron impurities in oil shale ash. Oil Shale, 2009, 26(2), 163–168.
http://dx.doi.org/10.3176/oil.2009.2.08

  3. Yoffe, O., Nathan, Y., Wolfarth, A., Cohen, S., Shoval, S. The chemistry and mineralogy of the Negev oil shale ashes. Fuel, 2002, 81(9), 1101–1117.
http://dx.doi.org/10.1016/S0016-2361(02)00021-2

  4. Zhang, L.-D., Zhang, X., Li, S.-H., Wang, Q. Comprehensive utilization of oil shale and prospect analysis. Energy Procedia, 2012, 17(A), 39–43.

  5. Al-Hamaiedh, H., Maaitah, O., Mahadin, S. Using oil shale ash in concrete binder. The Electronic Journal of Geotechnical Engineering (EJGE), 2004, 15, 601–608.

  6. Gao, G.-M., Zou, H.-F., Liu, D.-R., Miao, L.-N., Gan, S.-C., An, B.-C., Xu, J.-J., Li, G.-H. Synthesis of ultrafine silica powders based on oil shale ash by fluidized bed drying of wet-gel slurry. Fuel, 2009, 88(7), 1223–1227.
http://dx.doi.org/10.1016/j.fuel.2008.12.010

  7. Gao, G.-M., Liu, D.-R., Zou, H.-F., Zou, L.-C., Gan, S.-C. Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol., 2010, 197(3), 283–287.
http://dx.doi.org/10.1016/j.powtec.2009.10.005

  8. Shawabkeh, R., Al-Harahsheh, A., Hami, M., Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel, 2004, 83(7–8), 981–985.
http://dx.doi.org/10.1016/j.fuel.2003.10.009

  9. Velts, O., Uibu, M., Rudjak, I., Kallas, J., Kuusik, R. Utilization of oil shale ash to prepare PCC: leachibility dynamics and equilibrium in the ash-water system. Energy Procedia, 2009, 1, 4843–4850.
http://dx.doi.org/10.1016/j.egypro.2009.02.312

10. Zhu, B.-L., Xiu, Z.-M., Liu, N., Bi, H.-T., Lv, C.-X. Adsorption of lead and cadmium ions from aqueous solutions by modified oil shale ash. Oil Shale, 2012, 29(3), 268–278.
http://dx.doi.org/10.3176/oil.2012.3.06

11. Al-Qodah, Z., Shawaqfeh, A. T., Lafi, W. K. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination, 2007, 208, 294–305.
http://dx.doi.org/10.1016/j.desal.2006.06.019

12. Al-Asheh, S., Banat, F., Masad, A. Use of activated oil shale for the removal of 2,4-dichlorophenol from aqueous solutions. Water Qual. Res. J. Can., 2005, 40(2), 211–221.

13. Al-Qodah, Z. Adsorption of dyes using shale oil ash. Water Res., 2000, 34(17), 4295–4303.
http://dx.doi.org/10.1016/S0043-1354(00)00196-2

14. Dizge, N., Aydiner, C., Demirbas, E., Kobya, M., Kara, S. Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies. J. Hazard. Mater., 2008, 150(3), 737–746.
http://dx.doi.org/10.1016/j.jhazmat.2007.05.027

15. Wang, S., Soudi, M., Li, L., Zhu, Z. H. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. J. Hazard. Mater., 2006, 133(1–3), 243–251.
http://dx.doi.org/10.1016/j.jhazmat.2005.10.034

16. Janŏs, P., Buchtová, H., Rýznarová, M. Sorption of dyes from aqueous solu­tions onto fly ash. Water Res., 2003, 37(20), 4938–4944.
http://dx.doi.org/10.1016/j.watres.2003.08.011

17. Klika, Z., Čapková, P., Horáková, P., Valášková, M., Malý, P., Macháň, R., Pospíšil, M. Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue. J. Colloid Interf. Sci. 2007, 311(1), 14–23.
http://dx.doi.org/10.1016/j.jcis.2007.02.034

18. Kumar, K. V., Ramamurthi, V., Sivanesan, S. Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J. Colloid Interf. Sci., 2005, 284(1), 14–21.
http://dx.doi.org/10.1016/j.jcis.2004.09.063

19. Sun, D.-S., Zhang, X.-D., Wu, Y.-D., Liu, X. Adsorption of anionic dyes from aqueous solution on fly ash. J. Hazard. Mater., 2010, 181(1–3), 335–342.
http://dx.doi.org/10.1016/j.jhazmat.2010.05.015

20. Bulut, Y., Aydin, H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 2006, 194, 256–267.
http://dx.doi.org/10.1016/j.desal.2005.10.032

21. Turku, I., Sainio, T., Paatero, E. Thermodynamics of tetracycline adsorption on silica, Environ. Chem. Lett., 2007, 5(4), 225–228.
http://dx.doi.org/10.1007/s10311-007-0106-1

22. Ho, Y. S., McKay, G. Pseudo-second order model for sorption processes. Process Biochem., 1999, 34(5), 451–465.
http://dx.doi.org/10.1016/S0032-9592(98)00112-5

23. Machado, N. R. C. F., Miotto, D. M. M. Synthesis of Na–A and –X zeolites from oil shale ash. Fuel, 2005, 84(18), 2289–2294.
http://dx.doi.org/10.1016/j.fuel.2005.05.003

24. Pollard, S. J. T., Sollars, C. J., Perry, R. A low cost adsorbent from spent bleaching earth. I – The selection of an activation procedure. J. Chem. Technol. Biot., 1991, 50(2), 265–275.
http://dx.doi.org/10.1002/jctb.280500211

25. Chen, G., Pan, J., Han, B., Yan, H. Adsorption of methylene blue on montmorillonite. J. Disper. Sci. Technol., 1999, 20(4), 1179–1187.
http://dx.doi.org/10.1080/01932699908943843

26. El Mouzdahir, Y., Elmchaouri, A., Mahboub, R., Gil, A., Korili, S. A. Adsorp­tion of methylene blue from aqueous solutions on a Moroccan clay. J. Chem. Eng. Data, 2007, 52, 1621–1625.
http://dx.doi.org/10.1021/je700008g

27. Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., Mello, C. A. D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interf. Sci., 2009, 332(1), 46–53.
http://dx.doi.org/10.1016/j.jcis.2008.12.012

28. Li, Z., Chang, P.-H., Jiang, W.-T., Jean, J.-S., Hong, H. Mechanism of methylene blue removal from water by swelling clays. Chem. Eng. J., 2011, 168(3), 1193–1200.
http://dx.doi.org/10.1016/j.cej.2011.02.009

29. Malash, G. F., El-Khaiary, M. I. Methylene blue adsorption by the waste of Abu-Tartour phosphate rock. J. Colloid Interf. Sci., 2010, 348(2), 537–545.
http://dx.doi.org/10.1016/j.jcis.2010.05.005

30. Al-Futaisi, A., Jamrah, A., Al-Hanai, R. Aspects of cationic dye molecule adsorption to palygorskite. Desalination, 2007, 214, 327–342.
http://dx.doi.org/10.1016/j.desal.2006.10.024

31. Rytwo, G., Serban, C., Nir, S., Margulies, L. Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays Clay Miner., 1991, 39(5), 551–555.
http://dx.doi.org/10.1346/CCMN.1991.0390510

32. Ovchinnikov, O. V., Chernykh, S. V., Smirnov, M. S., Alpatova, D. V., Vorob’eva, R. P., Latyshev, A. N., Evlev, A. B., Utekhin, A. N., Lukin, A. N. Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals. J. Appl. Spectrosc., 2007, 74(6), 809–816.
http://dx.doi.org/10.1007/s10812-007-0126-4

33. Imamura, K., Ikeda, E., Nagayasu, T., Sakiyama, T., Nakanishi, K. Adsorption behavior of methylene blue and its congeners on a stainless steel surface. J. Colloid Interf. Sci., 2002, 245(1), 50–57.
http://dx.doi.org/10.1006/jcis.2001.7967

34. Paat, A., Traksmaa, T. Investigation of the mineral composition of Estonian oil-shale ash using X-Ray diffractometry. Oil Shale, 2002, 19(4), 373–386.

35. Xu, Y.-M., He, D.-M., Wang, D.-M., Lian, Y.-H., Guan, J., Zhang, Q.-M. Influence of calcination temperature on leaching rate of aluminum and iron impurities in oil shale ash. Oil Shale, 2009, 26(2), 163–168.
http://dx.doi.org/10.3176/oil.2009.2.08

36. Yoffe, O., Nathan, Y., Wolfarth, A., Cohen, S., Shoval, S. The chemistry and mineralogy of the Negev oil shale ashes. Fuel, 2002, 81(9), 1101–1117.
http://dx.doi.org/10.1016/S0016-2361(02)00021-2

37. Zhang, L.-D., Zhang, X., Li, S.-H., Wang, Q. Comprehensive utilization of oil shale and prospect analysis. Energy Procedia, 2012, 17(A), 39–43.

38. Al-Hamaiedh, H., Maaitah, O., Mahadin, S. Using oil shale ash in concrete binder. The Electronic Journal of Geotechnical Engineering (EJGE), 2004, 15, 601–608.

39. Gao, G.-M., Zou, H.-F., Liu, D.-R., Miao, L.-N., Gan, S.-C., An, B.-C., Xu, J.-J., Li, G.-H. Synthesis of ultrafine silica powders based on oil shale ash by fluidized bed drying of wet-gel slurry. Fuel, 2009, 88(7), 1223–1227.
http://dx.doi.org/10.1016/j.fuel.2008.12.010

40. Gao, G.-M., Liu, D.-R., Zou, H.-F., Zou, L.-C., Gan, S.-C. Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol., 2010, 197(3), 283–287.
http://dx.doi.org/10.1016/j.powtec.2009.10.005

41. Shawabkeh, R., Al-Harahsheh, A., Hami, M., Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel, 2004, 83(7–8), 981–985.
http://dx.doi.org/10.1016/j.fuel.2003.10.009

42. Velts, O., Uibu, M., Rudjak, I., Kallas, J., Kuusik, R. Utilization of oil shale ash to prepare PCC: leachibility dynamics and equilibrium in the ash-water system. Energy Procedia, 2009, 1, 4843–4850.
http://dx.doi.org/10.1016/j.egypro.2009.02.312

43. Zhu, B.-L., Xiu, Z.-M., Liu, N., Bi, H.-T., Lv, C.-X. Adsorption of lead and cadmium ions from aqueous solutions by modified oil shale ash. Oil Shale, 2012, 29(3), 268–278.
http://dx.doi.org/10.3176/oil.2012.3.06

44. Al-Qodah, Z., Shawaqfeh, A. T., Lafi, W. K. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination, 2007, 208, 294–305.
http://dx.doi.org/10.1016/j.desal.2006.06.019

45. Al-Asheh, S., Banat, F., Masad, A. Use of activated oil shale for the removal of 2,4-dichlorophenol from aqueous solutions. Water Qual. Res. J. Can., 2005, 40(2), 211–221.

46. Al-Qodah, Z. Adsorption of dyes using shale oil ash. Water Res., 2000, 34(17), 4295–4303.
http://dx.doi.org/10.1016/S0043-1354(00)00196-2

47. Dizge, N., Aydiner, C., Demirbas, E., Kobya, M., Kara, S. Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies. J. Hazard. Mater., 2008, 150(3), 737–746.
http://dx.doi.org/10.1016/j.jhazmat.2007.05.027

48. Wang, S., Soudi, M., Li, L., Zhu, Z. H. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. J. Hazard. Mater., 2006, 133(1–3), 243–251.
http://dx.doi.org/10.1016/j.jhazmat.2005.10.034

49. Janŏs, P., Buchtová, H., Rýznarová, M. Sorption of dyes from aqueous solu­tions onto fly ash. Water Res., 2003, 37(20), 4938–4944.
http://dx.doi.org/10.1016/j.watres.2003.08.011

50. Klika, Z., Čapková, P., Horáková, P., Valášková, M., Malý, P., Macháň, R., Pospíšil, M. Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue. J. Colloid Interf. Sci. 2007, 311(1), 14–23.
http://dx.doi.org/10.1016/j.jcis.2007.02.034

51. Kumar, K. V., Ramamurthi, V., Sivanesan, S. Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J. Colloid Interf. Sci., 2005, 284(1), 14–21.
http://dx.doi.org/10.1016/j.jcis.2004.09.063

52. Sun, D.-S., Zhang, X.-D., Wu, Y.-D., Liu, X. Adsorption of anionic dyes from aqueous solution on fly ash. J. Hazard. Mater., 2010, 181(1–3), 335–342.
http://dx.doi.org/10.1016/j.jhazmat.2010.05.015

53. Bulut, Y., Aydin, H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 2006, 194, 256–267.
http://dx.doi.org/10.1016/j.desal.2005.10.032

54. Turku, I., Sainio, T., Paatero, E. Thermodynamics of tetracycline adsorption on silica, Environ. Chem. Lett., 2007, 5(4), 225–228.
http://dx.doi.org/10.1007/s10311-007-0106-1

55. Ho, Y. S., McKay, G. Pseudo-second order model for sorption processes. Process Biochem., 1999, 34(5), 451–465.
http://dx.doi.org/10.1016/S0032-9592(98)00112-5

56. Machado, N. R. C. F., Miotto, D. M. M. Synthesis of Na–A and –X zeolites from oil shale ash. Fuel, 2005, 84(18), 2289–2294.
http://dx.doi.org/10.1016/j.fuel.2005.05.003

57. Pollard, S. J. T., Sollars, C. J., Perry, R. A low cost adsorbent from spent bleaching earth. I – The selection of an activation procedure. J. Chem. Technol. Biot., 1991, 50(2), 265–275.
http://dx.doi.org/10.1002/jctb.280500211

58. Chen, G., Pan, J., Han, B., Yan, H. Adsorption of methylene blue on montmorillonite. J. Disper. Sci. Technol., 1999, 20(4), 1179–1187.
http://dx.doi.org/10.1080/01932699908943843

59. El Mouzdahir, Y., Elmchaouri, A., Mahboub, R., Gil, A., Korili, S. A. Adsorp­tion of methylene blue from aqueous solutions on a Moroccan clay. J. Chem. Eng. Data, 2007, 52, 1621–1625.
http://dx.doi.org/10.1021/je700008g

60. Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., Mello, C. A. D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interf. Sci., 2009, 332(1), 46–53.
http://dx.doi.org/10.1016/j.jcis.2008.12.012

61. Li, Z., Chang, P.-H., Jiang, W.-T., Jean, J.-S., Hong, H. Mechanism of methylene blue removal from water by swelling clays. Chem. Eng. J., 2011, 168(3), 1193–1200.
http://dx.doi.org/10.1016/j.cej.2011.02.009

62. Malash, G. F., El-Khaiary, M. I. Methylene blue adsorption by the waste of Abu-Tartour phosphate rock. J. Colloid Interf. Sci., 2010, 348(2), 537–545.
http://dx.doi.org/10.1016/j.jcis.2010.05.005

63. Al-Futaisi, A., Jamrah, A., Al-Hanai, R. Aspects of cationic dye molecule adsorption to palygorskite. Desalination, 2007, 214, 327–342.
http://dx.doi.org/10.1016/j.desal.2006.10.024

64. Rytwo, G., Serban, C., Nir, S., Margulies, L. Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays Clay Miner., 1991, 39(5), 551–555.
http://dx.doi.org/10.1346/CCMN.1991.0390510

65. Ovchinnikov, O. V., Chernykh, S. V., Smirnov, M. S., Alpatova, D. V., Vorob’eva, R. P., Latyshev, A. N., Evlev, A. B., Utekhin, A. N., Lukin, A. N. Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals. J. Appl. Spectrosc., 2007, 74(6), 809–816.
http://dx.doi.org/10.1007/s10812-007-0126-4

66. Imamura, K., Ikeda, E., Nagayasu, T., Sakiyama, T., Nakanishi, K. Adsorption behavior of methylene blue and its congeners on a stainless steel surface. J. Colloid Interf. Sci., 2002, 245(1), 50–57.
http://dx.doi.org/10.1006/jcis.2001.7967

Back to Issue