ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
DIRECT CO2 SEQUESTRATION ONTO ALKALINE MODIFIED OIL SHALE FLY ASH; pp. 79–90
PDF | doi: 10.3176/oil.2014.1.08

Authors
JANEK REINIK, IVO HEINMAA, JOHANNES RITAMÄKI, DAN BOSTRÖM, EVA PONGRÁCZ, MIKA HUUHTANEN, WILLIAM LARSSON, Riitta Keiski, KRISZTIÁN KORDÁS, JYRI-PEKKA MIKKOLA
Abstract

The present study focuses on the direct chemical adsorption of CO2 onto alkaline hydrothermally activated oil shale fly ash (OSFA). The CO2 chemi­sorption experiments were conducted in a high-pressure reactor at a tem­perature of 150 °C and CO2 partial pressure of 100 bar during a 24-hour period. Original, activated and chemisorbed OSFA samples were charac­terized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), specific surface area (BETN2) and high-resolution 29Si magic angle spin­ning nuclear magnetic resonance (MAS-NMR). The results indicated moderate weight increase (max 5 wt%) and according to XRD and MAS-NMR analysis tobermorites had reacted with CO2, leading to calcite forma­tion. The results also show that the alkaline hydrothermally activated OSFA has a potential to be used in industrial processes for direct chemical adsorption of CO2 from flue gases.

References

1.  Höller, H., Wirsching, U. Zeolites formation from fly ash. Fortschr. Mineral., 1985, 63, 21–43.

2. Reinik, J., Heinmaa, I., Kirso, U., Kallaste, T., Ritamäki, J., Boström, D., Pongrácz, E., Huuhtanen, M., Larsson, W., Keiski, R., Kordás, K., Mik­kola, J. P. Alkaline modified oil shale fly ash: Optimal synthesis conditions and preliminary tests on CO2 adsorption. J. Hazard. Mater., 2011, 196, 180–186.
http://dx.doi.org/10.1016/j.jhazmat.2011.09.006

3. Rivas Mercury, J. M., Pena, P., De Aza, A. H., Turrillas, X., Sobrados, I., Sanz, J. Solid-state 27Al and 29Si NMR investigations on Si-substituted hydro­garnets. Acta Mater., 2007, 55(4), 1183–1191.
http://dx.doi.org/10.1016/j.actamat.2006.09.032

4. Siauciunas, R., Rupsyte, E., Kitrys, S., Galeckas, V. Influence of tobermorite texture and specific surface area on CO2 chemisorption. Colloid. Surface. A, 2004, 244(1–3), 197–204.
http://dx.doi.org/10.1016/j.colsurfa.2004.06.004

5. Touzé, S., Bourgeois, F., Baranger, P., Durst, P. Analyse bilantielle de procédés ex situ de séquestration du CO2. Rapport Final BRGM/RP-53290-FR, 2004 (in French).

6. Reinik, J., Heinmaa, I., Mikkola, J.-P., Kirso, U. Hydrothermal alkaline treat­ment of oil shale ash for synthesis of tobermorites. Fuel, 2007, 86(5–6), 669–676.
http://dx.doi.org/10.1016/j.fuel.2006.09.010

7. Brunauer, S., Emmett, P. H., Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60(2), 309–319.
http://dx.doi.org/10.1021/ja01269a023

8. Wieker, W., Grimmer, A.-R., Winkler, A., Mägi, M., Tarmak, M., Lippmaa, E. Solid-state high-resolution 29Si NMR spectroscopy of synthetic 14Å, 11Å and 9Å tobermorites. Cement Concrete Res., 1982, 12(3), 333–339.
http://dx.doi.org/10.1016/0008-8846(82)90081-3

9. Andersen, M. D., Jakobsen, H. J., Skibsted, J. Characterization of white Port­land cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cement Concrete Res., 2004, 34(5), 857–868.
http://dx.doi.org/10.1016/j.cemconres.2003.10.009

Back to Issue