ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
OIL SHALE ASH BASED STONE FORMATION – HYDRATION, HARDENING DYNAMICS AND PHASE TRANSFORMATIONS; pp. 91–101
PDF | doi: 10.3176/oil.2014.1.09

Authors
LEMBI-MERIKE RAADO, REIN KUUSIK, TIINA HAIN, MAI UIBU, PEETER SOMELAR
Abstract

Combustion of low calorific fuel – oil shale – in industrial-scale pulverized firing and circulating fluidized bed combustion boilers produces large amounts of ash. Estonian oil shale ash is characterized by a high content of free CaO as compared to those listed in the European Standard EN 450. The main alternatives to oil shale ash utilization include its use as a lime replacement in mineral binders or as a constituent of Portland cement. The pulverized firing ash formed at 1400 °C has been effectively used as a second main constituent of Portland cement during the last fifty years. Further utilization of the low-temperature circulating fluidized bed ash (formed at 800 °C) depends on its composition and properties. Dust collect­ing systems of both boiler types consist of bottom dusters, cyclones and electro­static precipitators. The corresponding ash types differ in specific sur­face area, grain size and mineral composition. The structure and composition of the dry ash and ash based stone were studied using chemical, XRD and SEM analysis. The results indicated that hydration type, as well as the setting and hardening course of the selected ash type are determined by the firing temperature of oil shale.

References

  1. Ots, A. Oil Shale Fuel Combustion. Tallinn, 2006.

  2. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4), 407–420.

  3. Raado, L.-M., Nurm, V. Properties of fluidized bed burnt oil shale ashes. In: Proceedings of European Symposium of Service Life and Serviceability of Concrete Structures ESCS-2006 (Sarja, A., ed.). Espoo, 2006, 200–205.

  4. Raado, L.-M., Tuisk, T., Rosenberg, M., Hain, T. Durability behavior of Portland burnt oil shale cement concrete. Oil Shale, 2011, 28(4), 507–515.
http://dx.doi.org/10.3176/oil.2011.4.04

  5. Matcshei, T., Lothenbach, B., Glasser, F.P. The role of calcium carbonate in cement hydration. Cement Concrete Res., 2007, 37(4), 551–558.
http://dx.doi.org/10.1016/j.cemconres.2006.10.013

  6. Sakai, E., Miyahara, S., Ohsawa, S., Lee, S.-H., Daimon, M. Hydration of fly ash cement. Cement Concrete Res., 2005, 35, 1135–1140.
http://dx.doi.org/10.1016/j.cemconres.2004.09.008

  7. Marsh, B. K., Day, R. L., Bonner, D. G. Pore structure characteristics affecting the permeability of cement paste containing fly ash. Cement Concrete Res., 1985, 15(6), 1027–1038.
http://dx.doi.org/10.1016/0008-8846(85)90094-8

  8. Hanehara, S., Tomosawa, F., Kobayakawa, M., Hwang, K. Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste. Cement Concrete Res., 2001, 31(1), 31–39.
http://dx.doi.org/10.1016/S0008-8846(00)00441-5

  9. Zhang, Y. M., Sun, W., Yan, H. D. Hydration of high-volume fly ash cement pastes. Cement Concrete Comp., 2000, 22(6), 445–452.
http://dx.doi.org/10.1016/S0958-9465(00)00044-5

10. Marsh, B. K., Day, R. L. Pozzolanic and cementitious reactions of fly ash in blended cement pastes. Cement Concrete Res., 1988, 18(2), 301–310.
http://dx.doi.org/10.1016/0008-8846(88)90014-2

11. EVS 636:2002 Burnt oil shale for production Portland burnt oil shale cement, Portland composite and masonry cement.

12. Kikas, W. Composition and binder properties of Estonian kukersite oil shale ash. Zement-Kalk-Gips International, 1997, No. 2, 112–126.

13. EVS-EN 197-1:2011 Cement. Part 1: Composition, specifications and conformity criteria for common cements.

14. EN 196 Part: 1, 2, 3, 5, 6, 21. Methods of testing cement.

15. EVS-EN 459-2:2010 Building lime. Test methods.

16. EVS-EN 451-1:2004 Method of testing fly ash. Part 1: Determination of free calcium oxide content.

17. Walenta, G., Füllmann, T. Advances in quantitative XRD analysis for clinker, cements, and cementitious additions. In: Advances in X-ray Analysis, JCPDS, 2004, 47, 287–295.

Back to Issue